基于低成本微云的水下普适数据科学的海洋雾计算升级

IF 3.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Farooq Dar, M. Liyanage, Marko Radeta, Zhigang Yin, Agustin Zuniga, Sokol Kosta, S. Tarkoma, P. Nurmi, Huber Flores
{"title":"基于低成本微云的水下普适数据科学的海洋雾计算升级","authors":"Farooq Dar, M. Liyanage, Marko Radeta, Zhigang Yin, Agustin Zuniga, Sokol Kosta, S. Tarkoma, P. Nurmi, Huber Flores","doi":"10.1145/3575801","DOIUrl":null,"url":null,"abstract":"Underwater environments are emerging as a new frontier for data science thanks to an increase in deployments of underwater sensor technology. Challenges in operating computing underwater combined with a lack of high-speed communication technology covering most aquatic areas means that there is a significant delay between the collection and analysis of data. This in turn limits the scale and complexity of the applications that can operate based on these data. In this article, we develop underwater fog computing support using low-cost micro-clouds and demonstrate how they can be used to deliver cost-effective support for data-heavy underwater applications. We develop a proof-of-concept micro-cloud prototype and use it to perform extensive benchmarks that evaluate the suitability of underwater micro-clouds for diverse underwater data science scenarios. We conduct rigorous tests in both controlled and field deployments, using river and sea waters. We also address technical challenges in enabling underwater fogs, evaluating the performance of different communication interfaces and demonstrating how accelerometers can be used to detect the likelihood of communication failures and determine which communication interface to use. Our work offers a cost-effective way to increase the scale and complexity of underwater data science applications, and demonstrates how off-the-shelf devices can be adopted for this purpose.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"57 1","pages":"1 - 29"},"PeriodicalIF":3.5000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Upscaling Fog Computing in Oceans for Underwater Pervasive Data Science Using Low-Cost Micro-Clouds\",\"authors\":\"Farooq Dar, M. Liyanage, Marko Radeta, Zhigang Yin, Agustin Zuniga, Sokol Kosta, S. Tarkoma, P. Nurmi, Huber Flores\",\"doi\":\"10.1145/3575801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater environments are emerging as a new frontier for data science thanks to an increase in deployments of underwater sensor technology. Challenges in operating computing underwater combined with a lack of high-speed communication technology covering most aquatic areas means that there is a significant delay between the collection and analysis of data. This in turn limits the scale and complexity of the applications that can operate based on these data. In this article, we develop underwater fog computing support using low-cost micro-clouds and demonstrate how they can be used to deliver cost-effective support for data-heavy underwater applications. We develop a proof-of-concept micro-cloud prototype and use it to perform extensive benchmarks that evaluate the suitability of underwater micro-clouds for diverse underwater data science scenarios. We conduct rigorous tests in both controlled and field deployments, using river and sea waters. We also address technical challenges in enabling underwater fogs, evaluating the performance of different communication interfaces and demonstrating how accelerometers can be used to detect the likelihood of communication failures and determine which communication interface to use. Our work offers a cost-effective way to increase the scale and complexity of underwater data science applications, and demonstrates how off-the-shelf devices can be adopted for this purpose.\",\"PeriodicalId\":29764,\"journal\":{\"name\":\"ACM Transactions on Internet of Things\",\"volume\":\"57 1\",\"pages\":\"1 - 29\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3575801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

由于水下传感器技术部署的增加,水下环境正在成为数据科学的新前沿。在水下操作计算的挑战,加上缺乏覆盖大多数水域的高速通信技术,意味着数据的收集和分析之间存在显着的延迟。这反过来限制了可以基于这些数据操作的应用程序的规模和复杂性。在本文中,我们使用低成本的微云开发水下雾计算支持,并演示如何使用它们为数据量大的水下应用程序提供经济高效的支持。我们开发了一个概念验证微云原型,并使用它来执行广泛的基准测试,以评估水下微云对各种水下数据科学场景的适用性。我们在控制和现场部署中使用河流和海水进行严格的测试。我们还解决了实现水下雾的技术挑战,评估了不同通信接口的性能,并演示了如何使用加速度计来检测通信故障的可能性并确定使用哪种通信接口。我们的工作提供了一种经济有效的方法来增加水下数据科学应用的规模和复杂性,并展示了如何采用现成的设备来实现这一目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upscaling Fog Computing in Oceans for Underwater Pervasive Data Science Using Low-Cost Micro-Clouds
Underwater environments are emerging as a new frontier for data science thanks to an increase in deployments of underwater sensor technology. Challenges in operating computing underwater combined with a lack of high-speed communication technology covering most aquatic areas means that there is a significant delay between the collection and analysis of data. This in turn limits the scale and complexity of the applications that can operate based on these data. In this article, we develop underwater fog computing support using low-cost micro-clouds and demonstrate how they can be used to deliver cost-effective support for data-heavy underwater applications. We develop a proof-of-concept micro-cloud prototype and use it to perform extensive benchmarks that evaluate the suitability of underwater micro-clouds for diverse underwater data science scenarios. We conduct rigorous tests in both controlled and field deployments, using river and sea waters. We also address technical challenges in enabling underwater fogs, evaluating the performance of different communication interfaces and demonstrating how accelerometers can be used to detect the likelihood of communication failures and determine which communication interface to use. Our work offers a cost-effective way to increase the scale and complexity of underwater data science applications, and demonstrates how off-the-shelf devices can be adopted for this purpose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信