拓扑Beth模型及其在高类型泛函中的应用

IF 0.3 Q4 MATHEMATICS
F. Kachapova
{"title":"拓扑Beth模型及其在高类型泛函中的应用","authors":"F. Kachapova","doi":"10.3844/jmssp.2020.212.223","DOIUrl":null,"url":null,"abstract":"Based on the definition of Beth-Kripke model by Dragalin, we describe Beth model from the topological point of view. We show the relation of the topological definition with more traditional relational definition of Beth model that is based on forcing. We apply the topological definition to construct a Beth model for a theory of intuitionistic functionals of high types and to prove its consistency","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"56 1","pages":"212-223"},"PeriodicalIF":0.3000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological Beth Model and its Application to Functionals of High Types\",\"authors\":\"F. Kachapova\",\"doi\":\"10.3844/jmssp.2020.212.223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the definition of Beth-Kripke model by Dragalin, we describe Beth model from the topological point of view. We show the relation of the topological definition with more traditional relational definition of Beth model that is based on forcing. We apply the topological definition to construct a Beth model for a theory of intuitionistic functionals of high types and to prove its consistency\",\"PeriodicalId\":41981,\"journal\":{\"name\":\"Jordan Journal of Mathematics and Statistics\",\"volume\":\"56 1\",\"pages\":\"212-223\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/jmssp.2020.212.223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jmssp.2020.212.223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在Dragalin对Beth- kripke模型定义的基础上,从拓扑的角度对Beth模型进行了描述。我们展示了拓扑定义与基于强迫的Beth模型更传统的关系定义之间的关系。本文应用拓扑定义构造了高类型直觉泛函理论的Beth模型,并证明了该模型的一致性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological Beth Model and its Application to Functionals of High Types
Based on the definition of Beth-Kripke model by Dragalin, we describe Beth model from the topological point of view. We show the relation of the topological definition with more traditional relational definition of Beth model that is based on forcing. We apply the topological definition to construct a Beth model for a theory of intuitionistic functionals of high types and to prove its consistency
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信