{"title":"论晶体光学中的相干性","authors":"D. Petrascheck","doi":"10.1016/0378-4363(88)90162-3","DOIUrl":null,"url":null,"abstract":"<div><p>The theory of dynamical diffraction is formulated such that it displays the anisotropy of the wave vector distribution of the diffracted beam explicitly. The result can be interpreted such that the coherence lengths of the diffracted beam are extremely different. It is also used to explain the “non-dispersive” phase shift in perfect-crystal interferometers.</p></div>","PeriodicalId":101023,"journal":{"name":"Physica B+C","volume":"151 1","pages":"Pages 171-175"},"PeriodicalIF":0.0000,"publicationDate":"1988-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0378-4363(88)90162-3","citationCount":"7","resultStr":"{\"title\":\"On coherence in crystal optics\",\"authors\":\"D. Petrascheck\",\"doi\":\"10.1016/0378-4363(88)90162-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The theory of dynamical diffraction is formulated such that it displays the anisotropy of the wave vector distribution of the diffracted beam explicitly. The result can be interpreted such that the coherence lengths of the diffracted beam are extremely different. It is also used to explain the “non-dispersive” phase shift in perfect-crystal interferometers.</p></div>\",\"PeriodicalId\":101023,\"journal\":{\"name\":\"Physica B+C\",\"volume\":\"151 1\",\"pages\":\"Pages 171-175\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0378-4363(88)90162-3\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B+C\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0378436388901623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B+C","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0378436388901623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The theory of dynamical diffraction is formulated such that it displays the anisotropy of the wave vector distribution of the diffracted beam explicitly. The result can be interpreted such that the coherence lengths of the diffracted beam are extremely different. It is also used to explain the “non-dispersive” phase shift in perfect-crystal interferometers.