{"title":"奇维二次曲面的Landau-Ginzburg模型比较","authors":"C. Pech, K. Rietsch","doi":"10.21915/BIMAS.2018301","DOIUrl":null,"url":null,"abstract":"In [Rie08], the second author dened a Landau-Ginzburg model for homogeneous spaces G=P , as a regular function on an ane subvariety of the Langlands dual group. In this paper, we reformulate this LG model in the case of the odd-dimensional quadric Q2m 1 as a regular function Wt on the complement X of a particular anticanonical divisor in the projective space P 2m = P(H (Q2m 1;C) ). In fact, we express Wt in","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"41 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Landau-Ginzburg Models for Odd Dimensional Quadrics\",\"authors\":\"C. Pech, K. Rietsch\",\"doi\":\"10.21915/BIMAS.2018301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [Rie08], the second author dened a Landau-Ginzburg model for homogeneous spaces G=P , as a regular function on an ane subvariety of the Langlands dual group. In this paper, we reformulate this LG model in the case of the odd-dimensional quadric Q2m 1 as a regular function Wt on the complement X of a particular anticanonical divisor in the projective space P 2m = P(H (Q2m 1;C) ). In fact, we express Wt in\",\"PeriodicalId\":43960,\"journal\":{\"name\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21915/BIMAS.2018301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/BIMAS.2018301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Comparison of Landau-Ginzburg Models for Odd Dimensional Quadrics
In [Rie08], the second author dened a Landau-Ginzburg model for homogeneous spaces G=P , as a regular function on an ane subvariety of the Langlands dual group. In this paper, we reformulate this LG model in the case of the odd-dimensional quadric Q2m 1 as a regular function Wt on the complement X of a particular anticanonical divisor in the projective space P 2m = P(H (Q2m 1;C) ). In fact, we express Wt in