H. Kameyama, Y. Okuyama, S. Kamohara, K. Kubota, H. Kume, K. Okuyama, Y. Manabe, A. Nozoe, H. Uchida, M. Hidaka, K. Ogura
{"title":"一种新的闪存持久应力后数据保留机制","authors":"H. Kameyama, Y. Okuyama, S. Kamohara, K. Kubota, H. Kume, K. Okuyama, Y. Manabe, A. Nozoe, H. Uchida, M. Hidaka, K. Ogura","doi":"10.1109/RELPHY.2000.843914","DOIUrl":null,"url":null,"abstract":"We propose a new data retention model after endurance stress that may be explained as a combination of two retention mechanisms. One inherent retention characteristic is ruled by thermionic emission and is dominant above 150 C. The other retention mechanism is dominant below 85 to 125 C and is controlled by anomalous SILC. We have clarified that the data retention properties after P/E cycling were well fitted by the hopping conduction model. In particular, the presence of traps generated by excessive P/E cycling played a significant role in the temperature dependence of the retention lifetime.","PeriodicalId":6387,"journal":{"name":"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)","volume":"35 1","pages":"194-199"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"A new data retention mechanism after endurance stress on flash memory\",\"authors\":\"H. Kameyama, Y. Okuyama, S. Kamohara, K. Kubota, H. Kume, K. Okuyama, Y. Manabe, A. Nozoe, H. Uchida, M. Hidaka, K. Ogura\",\"doi\":\"10.1109/RELPHY.2000.843914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new data retention model after endurance stress that may be explained as a combination of two retention mechanisms. One inherent retention characteristic is ruled by thermionic emission and is dominant above 150 C. The other retention mechanism is dominant below 85 to 125 C and is controlled by anomalous SILC. We have clarified that the data retention properties after P/E cycling were well fitted by the hopping conduction model. In particular, the presence of traps generated by excessive P/E cycling played a significant role in the temperature dependence of the retention lifetime.\",\"PeriodicalId\":6387,\"journal\":{\"name\":\"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)\",\"volume\":\"35 1\",\"pages\":\"194-199\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RELPHY.2000.843914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELPHY.2000.843914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new data retention mechanism after endurance stress on flash memory
We propose a new data retention model after endurance stress that may be explained as a combination of two retention mechanisms. One inherent retention characteristic is ruled by thermionic emission and is dominant above 150 C. The other retention mechanism is dominant below 85 to 125 C and is controlled by anomalous SILC. We have clarified that the data retention properties after P/E cycling were well fitted by the hopping conduction model. In particular, the presence of traps generated by excessive P/E cycling played a significant role in the temperature dependence of the retention lifetime.