逐面生成统一的平面地图

Pub Date : 2021-10-27 DOI:10.1002/rsa.21165
Alessandra Caraceni, Alexandre O. Stauffer
{"title":"逐面生成统一的平面地图","authors":"Alessandra Caraceni, Alexandre O. Stauffer","doi":"10.1002/rsa.21165","DOIUrl":null,"url":null,"abstract":"We provide “growth schemes” for inductively generating uniform random 2p$$ 2p $$ ‐angulations of the sphere with n$$ n $$ faces, as well as uniform random simple triangulations of the sphere with 2n$$ 2n $$ faces. In the case of 2p$$ 2p $$ ‐angulations, we provide a way to insert a new face at a random location in a uniform 2p$$ 2p $$ ‐angulation with n$$ n $$ faces in such a way that the new map is precisely a uniform 2p$$ 2p $$ ‐angulation with n+1$$ n+1 $$ faces. Similarly, given a uniform simple triangulation of the sphere with 2n$$ 2n $$ faces, we describe a way to insert two new adjacent triangles so as to obtain a uniform simple triangulation of the sphere with 2n+2$$ 2n+2 $$ faces. The latter is based on a new bijective presentation of simple triangulations that relies on a construction by Poulalhon and Schaeffer.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growing uniform planar maps face by face\",\"authors\":\"Alessandra Caraceni, Alexandre O. Stauffer\",\"doi\":\"10.1002/rsa.21165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide “growth schemes” for inductively generating uniform random 2p$$ 2p $$ ‐angulations of the sphere with n$$ n $$ faces, as well as uniform random simple triangulations of the sphere with 2n$$ 2n $$ faces. In the case of 2p$$ 2p $$ ‐angulations, we provide a way to insert a new face at a random location in a uniform 2p$$ 2p $$ ‐angulation with n$$ n $$ faces in such a way that the new map is precisely a uniform 2p$$ 2p $$ ‐angulation with n+1$$ n+1 $$ faces. Similarly, given a uniform simple triangulation of the sphere with 2n$$ 2n $$ faces, we describe a way to insert two new adjacent triangles so as to obtain a uniform simple triangulation of the sphere with 2n+2$$ 2n+2 $$ faces. The latter is based on a new bijective presentation of simple triangulations that relies on a construction by Poulalhon and Schaeffer.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了具有n个$$ n $$面的球体的均匀随机2p $$ 2p $$‐角的“生长方案”,以及具有2n个$$ 2n $$面的球体的均匀随机简单三角剖分。在2p $$ 2p $$‐角的情况下,我们提供了一种方法,可以在具有n个$$ n $$面的均匀2p $$ 2p $$‐角的随机位置插入新面,从而使新地图精确地具有n+1个$$ n+1 $$面的均匀2p $$ 2p $$‐角。同样,给定一个有2n个$$ 2n $$面的球面的均匀简单三角剖分,我们描述了一种插入两个新的相邻三角形的方法,从而得到一个有2n+2个$$ 2n+2 $$面的球面的均匀简单三角剖分。后者是基于一种新的简单三角测量的客观表示,它依赖于Poulalhon和Schaeffer的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Growing uniform planar maps face by face
We provide “growth schemes” for inductively generating uniform random 2p$$ 2p $$ ‐angulations of the sphere with n$$ n $$ faces, as well as uniform random simple triangulations of the sphere with 2n$$ 2n $$ faces. In the case of 2p$$ 2p $$ ‐angulations, we provide a way to insert a new face at a random location in a uniform 2p$$ 2p $$ ‐angulation with n$$ n $$ faces in such a way that the new map is precisely a uniform 2p$$ 2p $$ ‐angulation with n+1$$ n+1 $$ faces. Similarly, given a uniform simple triangulation of the sphere with 2n$$ 2n $$ faces, we describe a way to insert two new adjacent triangles so as to obtain a uniform simple triangulation of the sphere with 2n+2$$ 2n+2 $$ faces. The latter is based on a new bijective presentation of simple triangulations that relies on a construction by Poulalhon and Schaeffer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信