Riccardo Dejoma, Andrea Buscemi, Emilio Cutrona, Patrick Shahgaldian
{"title":"基于分层结构单片二氧化硅的低半乳糖生物催化流动反应器的设计","authors":"Riccardo Dejoma, Andrea Buscemi, Emilio Cutrona, Patrick Shahgaldian","doi":"10.2533/chimia.2023.432","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change mitigation requires the development of greener chemical processes. In this context, biocatalysis is a pivotal key enabling technology. The advantages of biocatalysis include lower energy consumption levels, reduced hazardous waste production and safer processes. The possibility to carry out biocatalytic reactions under flow conditions provides the additional advantage to retain the biocatalyst and to reduce costly downstream processes. Herein, we report a method to produce galactooligosaccharides (GOSs) from a largely available feedstock (i.e. lactose from dairy production) using a flow reactor based on hierarchically structured monolithic silica. This reactor allows for fast and efficient biotransformation reaction in flow conditions.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":"274 1","pages":"432-436"},"PeriodicalIF":2.9000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Biocatalytic Flow Reactor Based on Hierarchically Structured Monolithic Silica for Producing Galactooligosaccharides (GOSs).\",\"authors\":\"Riccardo Dejoma, Andrea Buscemi, Emilio Cutrona, Patrick Shahgaldian\",\"doi\":\"10.2533/chimia.2023.432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Climate change mitigation requires the development of greener chemical processes. In this context, biocatalysis is a pivotal key enabling technology. The advantages of biocatalysis include lower energy consumption levels, reduced hazardous waste production and safer processes. The possibility to carry out biocatalytic reactions under flow conditions provides the additional advantage to retain the biocatalyst and to reduce costly downstream processes. Herein, we report a method to produce galactooligosaccharides (GOSs) from a largely available feedstock (i.e. lactose from dairy production) using a flow reactor based on hierarchically structured monolithic silica. This reactor allows for fast and efficient biotransformation reaction in flow conditions.</p>\",\"PeriodicalId\":8885,\"journal\":{\"name\":\"Biological Chemistry\",\"volume\":\"274 1\",\"pages\":\"432-436\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2533/chimia.2023.432\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2533/chimia.2023.432","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Design of a Biocatalytic Flow Reactor Based on Hierarchically Structured Monolithic Silica for Producing Galactooligosaccharides (GOSs).
Climate change mitigation requires the development of greener chemical processes. In this context, biocatalysis is a pivotal key enabling technology. The advantages of biocatalysis include lower energy consumption levels, reduced hazardous waste production and safer processes. The possibility to carry out biocatalytic reactions under flow conditions provides the additional advantage to retain the biocatalyst and to reduce costly downstream processes. Herein, we report a method to produce galactooligosaccharides (GOSs) from a largely available feedstock (i.e. lactose from dairy production) using a flow reactor based on hierarchically structured monolithic silica. This reactor allows for fast and efficient biotransformation reaction in flow conditions.
期刊介绍:
Biological Chemistry keeps you up-to-date with all new developments in the molecular life sciences. In addition to original research reports, authoritative reviews written by leading researchers in the field keep you informed about the latest advances in the molecular life sciences. Rapid, yet rigorous reviewing ensures fast access to recent research results of exceptional significance in the biological sciences. Papers are published in a "Just Accepted" format within approx.72 hours of acceptance.