基于脑电图的脑机接口系统特征提取的优化SWCSP技术

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES
Navtej S. Ghumman, B. Jindal
{"title":"基于脑电图的脑机接口系统特征提取的优化SWCSP技术","authors":"Navtej S. Ghumman, B. Jindal","doi":"10.14500/aro.10926","DOIUrl":null,"url":null,"abstract":"Brain-computer interface (BCI) is an evolving technology having huge potential for rehabilitation of patients suffering from disorders of the nervous system, besides  many other nonmedical applications. Multichannel electroencephalography (EEG) is widely used to provide input signals to a BCI system. Significant research in methodology employed to implement different stages of BCI system, has led to discovery of new issues and challenges. The raw EEG data includes artifacts from environmental and physiological sources, which is eliminated in preprocessing phase of BCI system. It is then followed by a feature extraction stage to isolate a few relevant features for further classification to a particular motor imagery (MI) activity. A feature extraction approach based on spectrally weighted common spatial pattern (SWCSP) is proposed in this paper to improve overall accuracy of a BCI system. The reported literature uses SWCSP for feature extraction, as it has outperformed other techniques. The proposed approach enhances its performance by optimizing its parameters. The independent component analysis (ICA) method is used for detection and removal of irrelevant data, while linear discriminant analysis (LDA) is used as a classifier. The proposed approach is executed on benchmark data-set 2a of BCI competition IV. It yielded classification accuracy of 70.6% across nine subjects, which is higher than all the reported approaches. ","PeriodicalId":8398,"journal":{"name":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Optimized SWCSP Technique for Feature Extraction in EEG-based BCI System\",\"authors\":\"Navtej S. Ghumman, B. Jindal\",\"doi\":\"10.14500/aro.10926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-computer interface (BCI) is an evolving technology having huge potential for rehabilitation of patients suffering from disorders of the nervous system, besides  many other nonmedical applications. Multichannel electroencephalography (EEG) is widely used to provide input signals to a BCI system. Significant research in methodology employed to implement different stages of BCI system, has led to discovery of new issues and challenges. The raw EEG data includes artifacts from environmental and physiological sources, which is eliminated in preprocessing phase of BCI system. It is then followed by a feature extraction stage to isolate a few relevant features for further classification to a particular motor imagery (MI) activity. A feature extraction approach based on spectrally weighted common spatial pattern (SWCSP) is proposed in this paper to improve overall accuracy of a BCI system. The reported literature uses SWCSP for feature extraction, as it has outperformed other techniques. The proposed approach enhances its performance by optimizing its parameters. The independent component analysis (ICA) method is used for detection and removal of irrelevant data, while linear discriminant analysis (LDA) is used as a classifier. The proposed approach is executed on benchmark data-set 2a of BCI competition IV. It yielded classification accuracy of 70.6% across nine subjects, which is higher than all the reported approaches. \",\"PeriodicalId\":8398,\"journal\":{\"name\":\"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14500/aro.10926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14500/aro.10926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 3

摘要

脑机接口(BCI)是一项不断发展的技术,除了许多其他非医学应用外,在神经系统疾病患者的康复方面具有巨大的潜力。多通道脑电图(EEG)被广泛用于为脑机接口系统提供输入信号。在实施脑机接口系统不同阶段所采用的方法上的重要研究,导致了新的问题和挑战的发现。原始脑电数据包含环境和生理因素的伪影,这些伪影在脑机接口系统的预处理阶段被消除。接下来是特征提取阶段,以分离出一些相关特征,以便进一步分类到特定的运动图像(MI)活动。为了提高脑机接口系统的整体精度,提出了一种基于谱加权公共空间模式(SWCSP)的特征提取方法。报道的文献使用SWCSP进行特征提取,因为它优于其他技术。该方法通过优化其参数来提高其性能。使用独立成分分析(ICA)方法检测和去除不相关数据,使用线性判别分析(LDA)作为分类器。本文提出的方法在BCI竞赛IV的基准数据集2a上执行,9个科目的分类准确率为70.6%,高于所有已报道的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimized SWCSP Technique for Feature Extraction in EEG-based BCI System
Brain-computer interface (BCI) is an evolving technology having huge potential for rehabilitation of patients suffering from disorders of the nervous system, besides  many other nonmedical applications. Multichannel electroencephalography (EEG) is widely used to provide input signals to a BCI system. Significant research in methodology employed to implement different stages of BCI system, has led to discovery of new issues and challenges. The raw EEG data includes artifacts from environmental and physiological sources, which is eliminated in preprocessing phase of BCI system. It is then followed by a feature extraction stage to isolate a few relevant features for further classification to a particular motor imagery (MI) activity. A feature extraction approach based on spectrally weighted common spatial pattern (SWCSP) is proposed in this paper to improve overall accuracy of a BCI system. The reported literature uses SWCSP for feature extraction, as it has outperformed other techniques. The proposed approach enhances its performance by optimizing its parameters. The independent component analysis (ICA) method is used for detection and removal of irrelevant data, while linear discriminant analysis (LDA) is used as a classifier. The proposed approach is executed on benchmark data-set 2a of BCI competition IV. It yielded classification accuracy of 70.6% across nine subjects, which is higher than all the reported approaches. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY
ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY MULTIDISCIPLINARY SCIENCES-
自引率
33.30%
发文量
33
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信