从多样性预测到更好的本体与模式匹配

A. Gal, Haggai Roitman, Tomer Sagi
{"title":"从多样性预测到更好的本体与模式匹配","authors":"A. Gal, Haggai Roitman, Tomer Sagi","doi":"10.1145/2872427.2882999","DOIUrl":null,"url":null,"abstract":"Ontology & schema matching predictors assess the quality of matchers in the absence of an exact match. We propose MCD (Match Competitor Deviation), a new diversity-based predictor that compares the strength of a matcher confidence in the correspondence of a concept pair with respect to other correspondences that involve either concept. We also propose to use MCD as a regulator to optimally control a balance between Precision and Recall and use it towards 1:1 matching by combining it with a similarity measure that is based on solving a maximum weight bipartite graph matching (MWBM). Optimizing the combined measure is known to be an NP-Hard problem. Therefore, we propose CEM, an approximation to an optimal match by efficiently scanning multiple possible matches, using rare event estimation. Using a thorough empirical study over several benchmark real-world datasets, we show that MCD outperforms other state-of-the-art predictor and that CEM significantly outperform existing matchers.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"From Diversity-based Prediction to Better Ontology & Schema Matching\",\"authors\":\"A. Gal, Haggai Roitman, Tomer Sagi\",\"doi\":\"10.1145/2872427.2882999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ontology & schema matching predictors assess the quality of matchers in the absence of an exact match. We propose MCD (Match Competitor Deviation), a new diversity-based predictor that compares the strength of a matcher confidence in the correspondence of a concept pair with respect to other correspondences that involve either concept. We also propose to use MCD as a regulator to optimally control a balance between Precision and Recall and use it towards 1:1 matching by combining it with a similarity measure that is based on solving a maximum weight bipartite graph matching (MWBM). Optimizing the combined measure is known to be an NP-Hard problem. Therefore, we propose CEM, an approximation to an optimal match by efficiently scanning multiple possible matches, using rare event estimation. Using a thorough empirical study over several benchmark real-world datasets, we show that MCD outperforms other state-of-the-art predictor and that CEM significantly outperform existing matchers.\",\"PeriodicalId\":20455,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on World Wide Web\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2872427.2882999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2872427.2882999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本体和模式匹配预测器在没有精确匹配的情况下评估匹配器的质量。我们提出了MCD(匹配竞争者偏差),这是一种新的基于多样性的预测器,它比较了概念对对应的匹配者置信度与涉及任何概念的其他对应的强度。我们还建议使用MCD作为调节器,以最佳地控制精度和召回率之间的平衡,并通过将其与基于求解最大权重二部图匹配(MWBM)的相似性度量相结合,将其用于1:1匹配。优化组合措施是一个NP-Hard问题。因此,我们提出了CEM,这是一种通过使用稀有事件估计有效扫描多个可能匹配的最优匹配的近似。通过对几个基准真实数据集的全面实证研究,我们发现MCD优于其他最先进的预测器,而CEM明显优于现有的匹配器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Diversity-based Prediction to Better Ontology & Schema Matching
Ontology & schema matching predictors assess the quality of matchers in the absence of an exact match. We propose MCD (Match Competitor Deviation), a new diversity-based predictor that compares the strength of a matcher confidence in the correspondence of a concept pair with respect to other correspondences that involve either concept. We also propose to use MCD as a regulator to optimally control a balance between Precision and Recall and use it towards 1:1 matching by combining it with a similarity measure that is based on solving a maximum weight bipartite graph matching (MWBM). Optimizing the combined measure is known to be an NP-Hard problem. Therefore, we propose CEM, an approximation to an optimal match by efficiently scanning multiple possible matches, using rare event estimation. Using a thorough empirical study over several benchmark real-world datasets, we show that MCD outperforms other state-of-the-art predictor and that CEM significantly outperform existing matchers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信