{"title":"支持向量机与Naïve贝叶斯算法情感分析场景预处理性能比较","authors":"Nabila Valinka Pusean, N. Charibaldi, B. Santosa","doi":"10.25139/inform.v8i1.5667","DOIUrl":null,"url":null,"abstract":"Television shows need a rating in their assessment, but public opinion is also required to complete it. Sentiment analysis is necessary for its completion. An essential step in sentiment analysis is pre-processing because, in public opinion, there are still many inappropriate writings. This study aims to compare the performance results using different pre-processing scenarios to get the best pre-processing performance on Support Vector Machine (SVM) and Naïve Bayes (NB) on sentiment analysis about the television show X Factor Indonesia. The stages used to start from literature study, problem analysis, design, data collection, pre-processing with two scenarios, word weighting with TF-IDF, classification using SVM and NB, then resulting accuracy from Confusion Matrix. The findings of this research are that optimal performance can be achieved using a comprehensive pre-processing scenario. This scenario should include the following steps: case-folding, removing emoji, cleansing, removing repetition characters, word normalization, negation handling, stopwords removal, stemming, and tokenization, with an accuracy of 79.44% on the SVM algorithm. This research shows that the complete pre-processing of the SVM algorithm is better in terms of accuracy, precision, recall, and F1-score. \n ","PeriodicalId":52760,"journal":{"name":"Inform Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Scenario Pre-processing Performance on Support Vector Machine and Naïve Bayes Algorithms for Sentiment Analysis\",\"authors\":\"Nabila Valinka Pusean, N. Charibaldi, B. Santosa\",\"doi\":\"10.25139/inform.v8i1.5667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Television shows need a rating in their assessment, but public opinion is also required to complete it. Sentiment analysis is necessary for its completion. An essential step in sentiment analysis is pre-processing because, in public opinion, there are still many inappropriate writings. This study aims to compare the performance results using different pre-processing scenarios to get the best pre-processing performance on Support Vector Machine (SVM) and Naïve Bayes (NB) on sentiment analysis about the television show X Factor Indonesia. The stages used to start from literature study, problem analysis, design, data collection, pre-processing with two scenarios, word weighting with TF-IDF, classification using SVM and NB, then resulting accuracy from Confusion Matrix. The findings of this research are that optimal performance can be achieved using a comprehensive pre-processing scenario. This scenario should include the following steps: case-folding, removing emoji, cleansing, removing repetition characters, word normalization, negation handling, stopwords removal, stemming, and tokenization, with an accuracy of 79.44% on the SVM algorithm. This research shows that the complete pre-processing of the SVM algorithm is better in terms of accuracy, precision, recall, and F1-score. \\n \",\"PeriodicalId\":52760,\"journal\":{\"name\":\"Inform Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inform Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25139/inform.v8i1.5667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inform Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25139/inform.v8i1.5667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Scenario Pre-processing Performance on Support Vector Machine and Naïve Bayes Algorithms for Sentiment Analysis
Television shows need a rating in their assessment, but public opinion is also required to complete it. Sentiment analysis is necessary for its completion. An essential step in sentiment analysis is pre-processing because, in public opinion, there are still many inappropriate writings. This study aims to compare the performance results using different pre-processing scenarios to get the best pre-processing performance on Support Vector Machine (SVM) and Naïve Bayes (NB) on sentiment analysis about the television show X Factor Indonesia. The stages used to start from literature study, problem analysis, design, data collection, pre-processing with two scenarios, word weighting with TF-IDF, classification using SVM and NB, then resulting accuracy from Confusion Matrix. The findings of this research are that optimal performance can be achieved using a comprehensive pre-processing scenario. This scenario should include the following steps: case-folding, removing emoji, cleansing, removing repetition characters, word normalization, negation handling, stopwords removal, stemming, and tokenization, with an accuracy of 79.44% on the SVM algorithm. This research shows that the complete pre-processing of the SVM algorithm is better in terms of accuracy, precision, recall, and F1-score.