V. Baláž, Kálmán Liptai, János Tóth T., T. Visnyai
{"title":"正级数的收敛性与理想收敛性","authors":"V. Baláž, Kálmán Liptai, János Tóth T., T. Visnyai","doi":"10.33039/ami.2020.05.005","DOIUrl":null,"url":null,"abstract":"Let ℐ ⊆ 2 N be an admissible ideal, we say that a sequence ( 𝑥 𝑛 ) of real numbers ℐ− converges to a number 𝐿 , and write ℐ − lim 𝑥 𝑛 = 𝐿 , if for each 𝜀 > 0 the set 𝐴 𝜀 = { 𝑛 : | 𝑥 𝑛 − 𝐿 | ≥ 𝜀 } belongs to the ideal ℐ . In this paper we discuss the relation ship between convergence of positive series and the convergence properties of the summand sequence. Concretely, we study the ideals ℐ having the following property as well:","PeriodicalId":43454,"journal":{"name":"Annales Mathematicae et Informaticae","volume":"3 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence of positive series and ideal convergence\",\"authors\":\"V. Baláž, Kálmán Liptai, János Tóth T., T. Visnyai\",\"doi\":\"10.33039/ami.2020.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let ℐ ⊆ 2 N be an admissible ideal, we say that a sequence ( 𝑥 𝑛 ) of real numbers ℐ− converges to a number 𝐿 , and write ℐ − lim 𝑥 𝑛 = 𝐿 , if for each 𝜀 > 0 the set 𝐴 𝜀 = { 𝑛 : | 𝑥 𝑛 − 𝐿 | ≥ 𝜀 } belongs to the ideal ℐ . In this paper we discuss the relation ship between convergence of positive series and the convergence properties of the summand sequence. Concretely, we study the ideals ℐ having the following property as well:\",\"PeriodicalId\":43454,\"journal\":{\"name\":\"Annales Mathematicae et Informaticae\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae et Informaticae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33039/ami.2020.05.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae et Informaticae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33039/ami.2020.05.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Convergence of positive series and ideal convergence
Let ℐ ⊆ 2 N be an admissible ideal, we say that a sequence ( 𝑥 𝑛 ) of real numbers ℐ− converges to a number 𝐿 , and write ℐ − lim 𝑥 𝑛 = 𝐿 , if for each 𝜀 > 0 the set 𝐴 𝜀 = { 𝑛 : | 𝑥 𝑛 − 𝐿 | ≥ 𝜀 } belongs to the ideal ℐ . In this paper we discuss the relation ship between convergence of positive series and the convergence properties of the summand sequence. Concretely, we study the ideals ℐ having the following property as well: