B. Parhami-Seren, R. Haberly, M. N. Margolies, G. T. Haupert
{"title":"来自人血浆的瓦阿巴因结合蛋白","authors":"B. Parhami-Seren, R. Haberly, M. N. Margolies, G. T. Haupert","doi":"10.1161/01.HYP.0000027134.14160.1D","DOIUrl":null,"url":null,"abstract":"Conservation of the binding site on mammalian Na+,K+-ATPase for cardiac glycosides and the importance of the Na+ pump in mammalian cellular physiology has stimulated the search for a mammalian analog of these plant compounds. One candidate, isolated from brain and blood, appears to be ouabain itself or a closely related isomer, the ouabain-like compound. Little is known about the circulating form. Because human steroid hormones circulate with carrier proteins, we produced a ouabain-specific monoclonal antibody (mAb 1-10) and used it to probe normal human plasma for ouabain-protein carrier complex. Ouabain-like biological activity was isolated in association with protein bands of 80, 50, and 25 kDa. These proteins appear to be human immunoglobulins or immunoglobulin-like because they are recognized by anti-human immunoglobulin antibodies, but not by anti-mouse immunoglobulin antibodies. The protein-containing fractions inhibit the binding of mAb 1-10 to immobilized ouabain, and with further purification on protein A, the immunoglobulin-like protein binds radioactive ouabain with an IC50 of 200 to 600 nmol/L, but binds digoxin with 100-fold less affinity, suggesting specificity for ouabain or its isomer. Active protein fractions after purification on C18 inhibit Na+ pump activity in human erythrocytes (IC50≈4 nmol/L, ouabain equivalents), and this chromatography appears to dissociate the ouabain-like compound from the immunoglobulin protein(s). These immunoglobulin-like molecules may represent a subset of immunoglobulins (≤0.5% of total protein A immunoglobulin) that function as a reservoir and delivery system for ouabain-like compounds in the modulation of human Na+, K+-ATPase in vivo.","PeriodicalId":13233,"journal":{"name":"Hypertension: Journal of the American Heart Association","volume":"4 1","pages":"220-228"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Ouabain-Binding Protein(s) From Human Plasma\",\"authors\":\"B. Parhami-Seren, R. Haberly, M. N. Margolies, G. T. Haupert\",\"doi\":\"10.1161/01.HYP.0000027134.14160.1D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conservation of the binding site on mammalian Na+,K+-ATPase for cardiac glycosides and the importance of the Na+ pump in mammalian cellular physiology has stimulated the search for a mammalian analog of these plant compounds. One candidate, isolated from brain and blood, appears to be ouabain itself or a closely related isomer, the ouabain-like compound. Little is known about the circulating form. Because human steroid hormones circulate with carrier proteins, we produced a ouabain-specific monoclonal antibody (mAb 1-10) and used it to probe normal human plasma for ouabain-protein carrier complex. Ouabain-like biological activity was isolated in association with protein bands of 80, 50, and 25 kDa. These proteins appear to be human immunoglobulins or immunoglobulin-like because they are recognized by anti-human immunoglobulin antibodies, but not by anti-mouse immunoglobulin antibodies. The protein-containing fractions inhibit the binding of mAb 1-10 to immobilized ouabain, and with further purification on protein A, the immunoglobulin-like protein binds radioactive ouabain with an IC50 of 200 to 600 nmol/L, but binds digoxin with 100-fold less affinity, suggesting specificity for ouabain or its isomer. Active protein fractions after purification on C18 inhibit Na+ pump activity in human erythrocytes (IC50≈4 nmol/L, ouabain equivalents), and this chromatography appears to dissociate the ouabain-like compound from the immunoglobulin protein(s). These immunoglobulin-like molecules may represent a subset of immunoglobulins (≤0.5% of total protein A immunoglobulin) that function as a reservoir and delivery system for ouabain-like compounds in the modulation of human Na+, K+-ATPase in vivo.\",\"PeriodicalId\":13233,\"journal\":{\"name\":\"Hypertension: Journal of the American Heart Association\",\"volume\":\"4 1\",\"pages\":\"220-228\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hypertension: Journal of the American Heart Association\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1161/01.HYP.0000027134.14160.1D\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hypertension: Journal of the American Heart Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/01.HYP.0000027134.14160.1D","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conservation of the binding site on mammalian Na+,K+-ATPase for cardiac glycosides and the importance of the Na+ pump in mammalian cellular physiology has stimulated the search for a mammalian analog of these plant compounds. One candidate, isolated from brain and blood, appears to be ouabain itself or a closely related isomer, the ouabain-like compound. Little is known about the circulating form. Because human steroid hormones circulate with carrier proteins, we produced a ouabain-specific monoclonal antibody (mAb 1-10) and used it to probe normal human plasma for ouabain-protein carrier complex. Ouabain-like biological activity was isolated in association with protein bands of 80, 50, and 25 kDa. These proteins appear to be human immunoglobulins or immunoglobulin-like because they are recognized by anti-human immunoglobulin antibodies, but not by anti-mouse immunoglobulin antibodies. The protein-containing fractions inhibit the binding of mAb 1-10 to immobilized ouabain, and with further purification on protein A, the immunoglobulin-like protein binds radioactive ouabain with an IC50 of 200 to 600 nmol/L, but binds digoxin with 100-fold less affinity, suggesting specificity for ouabain or its isomer. Active protein fractions after purification on C18 inhibit Na+ pump activity in human erythrocytes (IC50≈4 nmol/L, ouabain equivalents), and this chromatography appears to dissociate the ouabain-like compound from the immunoglobulin protein(s). These immunoglobulin-like molecules may represent a subset of immunoglobulins (≤0.5% of total protein A immunoglobulin) that function as a reservoir and delivery system for ouabain-like compounds in the modulation of human Na+, K+-ATPase in vivo.