{"title":"建议,或不建议的查询具有不同的意图:优化搜索结果的表现","authors":"Makoto P. Kato, Katsumi Tanaka","doi":"10.1145/2835776.2835805","DOIUrl":null,"url":null,"abstract":"We propose a method of optimizing search result presentation for queries with diverse intents, by selectively presenting query suggestions for leading users to more relevant search results. The optimization is based on a probabilistic model of users who click on query suggestions in accordance with their intents, and modified versions of intent-aware evaluation metrics that take into account the co-occurrence between intents. Showing many query suggestions simply increases a chance to satisfy users with diverse intents in this model, while it in fact requires users to spend additional time for scanning and selecting suggestions, and may result in low satisfaction for some users. Therefore, we measured the loss of time caused by query suggestion presentation by conducting a user study in different settings, and included its negative effects in our optimization problem. Our experiments revealed that the optimization of search result presentation significantly improved that of a single ranked list, and was beneficial especially for patient users. Moreover, experimental results showed that our optimization was effective particularly when intents of a query often co-occur with a small subset of intents.","PeriodicalId":20567,"journal":{"name":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"To Suggest, or Not to Suggest for Queries with Diverse Intents: Optimizing Search Result Presentation\",\"authors\":\"Makoto P. Kato, Katsumi Tanaka\",\"doi\":\"10.1145/2835776.2835805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method of optimizing search result presentation for queries with diverse intents, by selectively presenting query suggestions for leading users to more relevant search results. The optimization is based on a probabilistic model of users who click on query suggestions in accordance with their intents, and modified versions of intent-aware evaluation metrics that take into account the co-occurrence between intents. Showing many query suggestions simply increases a chance to satisfy users with diverse intents in this model, while it in fact requires users to spend additional time for scanning and selecting suggestions, and may result in low satisfaction for some users. Therefore, we measured the loss of time caused by query suggestion presentation by conducting a user study in different settings, and included its negative effects in our optimization problem. Our experiments revealed that the optimization of search result presentation significantly improved that of a single ranked list, and was beneficial especially for patient users. Moreover, experimental results showed that our optimization was effective particularly when intents of a query often co-occur with a small subset of intents.\",\"PeriodicalId\":20567,\"journal\":{\"name\":\"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2835776.2835805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835776.2835805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
To Suggest, or Not to Suggest for Queries with Diverse Intents: Optimizing Search Result Presentation
We propose a method of optimizing search result presentation for queries with diverse intents, by selectively presenting query suggestions for leading users to more relevant search results. The optimization is based on a probabilistic model of users who click on query suggestions in accordance with their intents, and modified versions of intent-aware evaluation metrics that take into account the co-occurrence between intents. Showing many query suggestions simply increases a chance to satisfy users with diverse intents in this model, while it in fact requires users to spend additional time for scanning and selecting suggestions, and may result in low satisfaction for some users. Therefore, we measured the loss of time caused by query suggestion presentation by conducting a user study in different settings, and included its negative effects in our optimization problem. Our experiments revealed that the optimization of search result presentation significantly improved that of a single ranked list, and was beneficial especially for patient users. Moreover, experimental results showed that our optimization was effective particularly when intents of a query often co-occur with a small subset of intents.