用于乙醇检测的快速响应水凝胶等离子体传感器衬底

C. Kroh, R. Wuchrer, Nadja Steinke, Margarita Guenther, G. Gerlach, T. Härtling
{"title":"用于乙醇检测的快速响应水凝胶等离子体传感器衬底","authors":"C. Kroh, R. Wuchrer, Nadja Steinke, Margarita Guenther, G. Gerlach, T. Härtling","doi":"10.1109/SENSORS43011.2019.8956577","DOIUrl":null,"url":null,"abstract":"The inline monitoring of ethanol concentrations in liquids is a crucial part of process monitoring in breweries and distilleries. Current methods are based on infrared spectroscopy which are bulky and costly making them non-affordable for small and middle-sized companies. To overcome these problems, we present a small, compact and cost-effective sensing method, based on a nanostructured, plasmonically active sensor substrate. The sensor substrate is coated with a microstructured ethanol-sensitive acrylamide-bisacrylamide hydrogel which induces a change of the hydrogel’s refractive index in conjugation with the hydrogel swelling and shrinking. With such an approach, the ethanol concentration in liquids can be determined in a simple optical transmittance setup. In our study, we demonstrate the capability of the sensor principle for the detection of ethanol concentration ranging from 0 to 30 vol%. Furthermore, we determined the response time of the sensor substrate to be less than 10 seconds, which shows an enormous improvement compared to other hydrogel-based sensing methods. Finally, initial results for real sample measurements are presented.","PeriodicalId":6710,"journal":{"name":"2019 IEEE SENSORS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast response hydrogel-based plasmonic sensor substrate for the detection of ethanol\",\"authors\":\"C. Kroh, R. Wuchrer, Nadja Steinke, Margarita Guenther, G. Gerlach, T. Härtling\",\"doi\":\"10.1109/SENSORS43011.2019.8956577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The inline monitoring of ethanol concentrations in liquids is a crucial part of process monitoring in breweries and distilleries. Current methods are based on infrared spectroscopy which are bulky and costly making them non-affordable for small and middle-sized companies. To overcome these problems, we present a small, compact and cost-effective sensing method, based on a nanostructured, plasmonically active sensor substrate. The sensor substrate is coated with a microstructured ethanol-sensitive acrylamide-bisacrylamide hydrogel which induces a change of the hydrogel’s refractive index in conjugation with the hydrogel swelling and shrinking. With such an approach, the ethanol concentration in liquids can be determined in a simple optical transmittance setup. In our study, we demonstrate the capability of the sensor principle for the detection of ethanol concentration ranging from 0 to 30 vol%. Furthermore, we determined the response time of the sensor substrate to be less than 10 seconds, which shows an enormous improvement compared to other hydrogel-based sensing methods. Finally, initial results for real sample measurements are presented.\",\"PeriodicalId\":6710,\"journal\":{\"name\":\"2019 IEEE SENSORS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS43011.2019.8956577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS43011.2019.8956577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

液体中乙醇浓度的在线监测是啤酒厂和酿酒厂过程监测的重要组成部分。目前的方法是基于红外光谱,体积大,成本高,中小型公司负担不起。为了克服这些问题,我们提出了一种基于纳米结构等离子体有源传感器衬底的小型,紧凑且具有成本效益的传感方法。在传感器衬底上涂覆一层微结构的乙醇敏感丙烯酰胺-双丙烯酰胺水凝胶,水凝胶的折射率随水凝胶的膨胀和收缩而变化。利用这种方法,可以在一个简单的光学透射率设置中确定液体中的乙醇浓度。在我们的研究中,我们展示了传感器原理检测乙醇浓度范围从0到30 vol%的能力。此外,我们确定传感器衬底的响应时间小于10秒,与其他基于水凝胶的传感方法相比,这显示出巨大的改进。最后给出了实际样品测量的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast response hydrogel-based plasmonic sensor substrate for the detection of ethanol
The inline monitoring of ethanol concentrations in liquids is a crucial part of process monitoring in breweries and distilleries. Current methods are based on infrared spectroscopy which are bulky and costly making them non-affordable for small and middle-sized companies. To overcome these problems, we present a small, compact and cost-effective sensing method, based on a nanostructured, plasmonically active sensor substrate. The sensor substrate is coated with a microstructured ethanol-sensitive acrylamide-bisacrylamide hydrogel which induces a change of the hydrogel’s refractive index in conjugation with the hydrogel swelling and shrinking. With such an approach, the ethanol concentration in liquids can be determined in a simple optical transmittance setup. In our study, we demonstrate the capability of the sensor principle for the detection of ethanol concentration ranging from 0 to 30 vol%. Furthermore, we determined the response time of the sensor substrate to be less than 10 seconds, which shows an enormous improvement compared to other hydrogel-based sensing methods. Finally, initial results for real sample measurements are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信