在λ微演算中与流分离

A. Saurin
{"title":"在λ微演算中与流分离","authors":"A. Saurin","doi":"10.1109/LICS.2005.48","DOIUrl":null,"url":null,"abstract":"The /spl lambda//spl mu/-calculus is an extension of the /spl lambda/-calculus introduced in 1992 by Parigot (M. Parigot, 1992) in order to generalize the Curry-Howard isomorphism to classical logic. Two versions of the calculus are usually considered in the literature: Parigot's original syntax and an alternative syntax introduced by de Groote. In 2001, David and Py (R. David, 2001) proved that the Separation Property (also referred to as Bohm theorem) fails for Parigot's /spl lambda//spl mu/-calculus. By analyzing David & Py's result, we exhibit an extension of Parigot's /spl lambda//spl mu/-calculus, the /spl Lambda//spl mu/-calculus, for which the Separation Property holds and which is built as an intermediate language between Parigot's and de Groote's /spl lambda//spl mu/-calculi. We prove the theorem and describe how /spl Lambda//spl mu/-calculus can be considered as a calculus of terms and streams. We then illustrate Separation in showing how in /spl Lambda//spl mu/-calculus it is possible to separate the counter-example used by David & Py.","PeriodicalId":6322,"journal":{"name":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","volume":"45 1","pages":"356-365"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Separation with Streams in the lambdaµ-calculus\",\"authors\":\"A. Saurin\",\"doi\":\"10.1109/LICS.2005.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The /spl lambda//spl mu/-calculus is an extension of the /spl lambda/-calculus introduced in 1992 by Parigot (M. Parigot, 1992) in order to generalize the Curry-Howard isomorphism to classical logic. Two versions of the calculus are usually considered in the literature: Parigot's original syntax and an alternative syntax introduced by de Groote. In 2001, David and Py (R. David, 2001) proved that the Separation Property (also referred to as Bohm theorem) fails for Parigot's /spl lambda//spl mu/-calculus. By analyzing David & Py's result, we exhibit an extension of Parigot's /spl lambda//spl mu/-calculus, the /spl Lambda//spl mu/-calculus, for which the Separation Property holds and which is built as an intermediate language between Parigot's and de Groote's /spl lambda//spl mu/-calculi. We prove the theorem and describe how /spl Lambda//spl mu/-calculus can be considered as a calculus of terms and streams. We then illustrate Separation in showing how in /spl Lambda//spl mu/-calculus it is possible to separate the counter-example used by David & Py.\",\"PeriodicalId\":6322,\"journal\":{\"name\":\"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"45 1\",\"pages\":\"356-365\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2005.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2005.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

/spl λ //spl mu/-演算是Parigot (M. Parigot, 1992)为了将Curry-Howard同态推广到经典逻辑而在1992年引入的/spl λ /-演算的扩展。文献中通常考虑两种版本的微积分:Parigot的原始语法和de Groote引入的替代语法。2001年,David和Py (R. David, 2001)证明了Parigot's /spl lambda//spl mu/-微积分的分离性质(也称为Bohm定理)是不成立的。通过分析David & Py的结果,我们展示了Parigot的/spl lambda//spl mu/-calculus的扩展,即/spl lambda//spl mu/-calculus,分离属性适用于/spl lambda//spl mu/-calculus,并且作为Parigot和de Groote的/spl lambda//spl mu/-calculus之间的中间语言。我们证明了这个定理,并描述了/spl Lambda//spl mu/-微积分如何被视为项和流的微积分。然后,我们通过展示如何在/spl Lambda//spl mu/-微积分中分离David & Py使用的反例来说明分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separation with Streams in the lambdaµ-calculus
The /spl lambda//spl mu/-calculus is an extension of the /spl lambda/-calculus introduced in 1992 by Parigot (M. Parigot, 1992) in order to generalize the Curry-Howard isomorphism to classical logic. Two versions of the calculus are usually considered in the literature: Parigot's original syntax and an alternative syntax introduced by de Groote. In 2001, David and Py (R. David, 2001) proved that the Separation Property (also referred to as Bohm theorem) fails for Parigot's /spl lambda//spl mu/-calculus. By analyzing David & Py's result, we exhibit an extension of Parigot's /spl lambda//spl mu/-calculus, the /spl Lambda//spl mu/-calculus, for which the Separation Property holds and which is built as an intermediate language between Parigot's and de Groote's /spl lambda//spl mu/-calculi. We prove the theorem and describe how /spl Lambda//spl mu/-calculus can be considered as a calculus of terms and streams. We then illustrate Separation in showing how in /spl Lambda//spl mu/-calculus it is possible to separate the counter-example used by David & Py.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信