黄金比例Phi与Zeta函数SUM的关系

Q3 Mathematics
Shaimaa Said Soltan
{"title":"黄金比例Phi与Zeta函数SUM的关系","authors":"Shaimaa Said Soltan","doi":"10.5539/jmr.v15n2p31","DOIUrl":null,"url":null,"abstract":"This paper will explain the relation between the golden ratio Phi and Zeta function SUM. First, we will introduce why we used Phi and its functional properties then we will go through some of Phi Properties in a complex plane. Finally, we will use this Golden ratio Phi functional formula, to find the sum of the Prime numbers in Zeta function infinite series in relation with the Golden ration Phi, and pi.","PeriodicalId":38619,"journal":{"name":"International Journal of Mathematics in Operational Research","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relation Between the Golden Ratio Phi and Zeta Function SUM\",\"authors\":\"Shaimaa Said Soltan\",\"doi\":\"10.5539/jmr.v15n2p31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper will explain the relation between the golden ratio Phi and Zeta function SUM. First, we will introduce why we used Phi and its functional properties then we will go through some of Phi Properties in a complex plane. Finally, we will use this Golden ratio Phi functional formula, to find the sum of the Prime numbers in Zeta function infinite series in relation with the Golden ration Phi, and pi.\",\"PeriodicalId\":38619,\"journal\":{\"name\":\"International Journal of Mathematics in Operational Research\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics in Operational Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/jmr.v15n2p31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics in Operational Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/jmr.v15n2p31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文将解释黄金比例Phi与Zeta函数SUM之间的关系。首先,我们会介绍为什么要用和它的函数性质然后我们会讨论复平面上的一些性质。最后,我们将使用黄金比例函数公式,找到Zeta函数无穷级数中与黄金比例和有关的质数之和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relation Between the Golden Ratio Phi and Zeta Function SUM
This paper will explain the relation between the golden ratio Phi and Zeta function SUM. First, we will introduce why we used Phi and its functional properties then we will go through some of Phi Properties in a complex plane. Finally, we will use this Golden ratio Phi functional formula, to find the sum of the Prime numbers in Zeta function infinite series in relation with the Golden ration Phi, and pi.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mathematics in Operational Research
International Journal of Mathematics in Operational Research Decision Sciences-Decision Sciences (all)
CiteScore
2.10
自引率
0.00%
发文量
44
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信