{"title":"网络上具有传染性攻击的Stackelberg安全游戏:重新分配救援","authors":"Rufan Bai, Haoxing Lin, Xinyu Yang, Xiaowei Wu, Minming Li, Weijia Jia","doi":"10.1613/jair.1.14563","DOIUrl":null,"url":null,"abstract":"In the classic network security games, the defender distributes defending resources to the nodes of the network, and the attacker attacks a node, with the objective of maximizing the damage caused. In this paper, we consider the network defending problem against contagious attacks, e.g., the attack at a node u spreads to the neighbors of u and can cause damage at multiple nodes. Existing works that study shared resources assume that the resource allocated to a node can be shared or duplicated between neighboring nodes. However, in the real world, sharing resource naturally leads to a decrease in defending power of the source node, especially when defending against contagious attacks. Therefore, we study the model in which resources allocated to a node can only be transferred to its neighboring nodes, which we refer to as a reallocation process. We show that the problem of computing optimal defending strategy is NP-hard even for some very special cases. For positive results, we give a mixed integer linear program formulation for the problem and a bi-criteria approximation algorithm. Our experimental results demonstrate that the allocation and reallocation strategies our algorithm computes perform well in terms of minimizing the damage due to contagious attacks.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stackelberg Security Games with Contagious Attacks on a Network: Reallocation to the Rescue\",\"authors\":\"Rufan Bai, Haoxing Lin, Xinyu Yang, Xiaowei Wu, Minming Li, Weijia Jia\",\"doi\":\"10.1613/jair.1.14563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the classic network security games, the defender distributes defending resources to the nodes of the network, and the attacker attacks a node, with the objective of maximizing the damage caused. In this paper, we consider the network defending problem against contagious attacks, e.g., the attack at a node u spreads to the neighbors of u and can cause damage at multiple nodes. Existing works that study shared resources assume that the resource allocated to a node can be shared or duplicated between neighboring nodes. However, in the real world, sharing resource naturally leads to a decrease in defending power of the source node, especially when defending against contagious attacks. Therefore, we study the model in which resources allocated to a node can only be transferred to its neighboring nodes, which we refer to as a reallocation process. We show that the problem of computing optimal defending strategy is NP-hard even for some very special cases. For positive results, we give a mixed integer linear program formulation for the problem and a bi-criteria approximation algorithm. Our experimental results demonstrate that the allocation and reallocation strategies our algorithm computes perform well in terms of minimizing the damage due to contagious attacks.\",\"PeriodicalId\":54877,\"journal\":{\"name\":\"Journal of Artificial Intelligence Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1613/jair.1.14563\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.14563","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Stackelberg Security Games with Contagious Attacks on a Network: Reallocation to the Rescue
In the classic network security games, the defender distributes defending resources to the nodes of the network, and the attacker attacks a node, with the objective of maximizing the damage caused. In this paper, we consider the network defending problem against contagious attacks, e.g., the attack at a node u spreads to the neighbors of u and can cause damage at multiple nodes. Existing works that study shared resources assume that the resource allocated to a node can be shared or duplicated between neighboring nodes. However, in the real world, sharing resource naturally leads to a decrease in defending power of the source node, especially when defending against contagious attacks. Therefore, we study the model in which resources allocated to a node can only be transferred to its neighboring nodes, which we refer to as a reallocation process. We show that the problem of computing optimal defending strategy is NP-hard even for some very special cases. For positive results, we give a mixed integer linear program formulation for the problem and a bi-criteria approximation algorithm. Our experimental results demonstrate that the allocation and reallocation strategies our algorithm computes perform well in terms of minimizing the damage due to contagious attacks.
期刊介绍:
JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.