声发射技术和人工神经网络在局部放电分类中的应用

Y. Tian, Paul Lewin, A. E. Davies, S. Sutton, S. Swingler
{"title":"声发射技术和人工神经网络在局部放电分类中的应用","authors":"Y. Tian, Paul Lewin, A. E. Davies, S. Sutton, S. Swingler","doi":"10.1109/ELINSL.2002.995895","DOIUrl":null,"url":null,"abstract":"Partial discharge (PD) detection, signal analysis and pattern identification, using acoustic emission measurements and the back-propagation (BP) artificial neural network (ANN) have been investigated. The measured signals were processed using three-dimensional patterns and short duration Fourier transforms (SDFT). Investigation indicates that using BP ANN with the SDFT components for classifying different PD patterns provides very good overall results.","PeriodicalId":10532,"journal":{"name":"Conference Record of the the 2002 IEEE International Symposium on Electrical Insulation (Cat. No.02CH37316)","volume":"64 1","pages":"119-123"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Application of acoustic emission techniques and artificial neural networks to partial discharge classification\",\"authors\":\"Y. Tian, Paul Lewin, A. E. Davies, S. Sutton, S. Swingler\",\"doi\":\"10.1109/ELINSL.2002.995895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partial discharge (PD) detection, signal analysis and pattern identification, using acoustic emission measurements and the back-propagation (BP) artificial neural network (ANN) have been investigated. The measured signals were processed using three-dimensional patterns and short duration Fourier transforms (SDFT). Investigation indicates that using BP ANN with the SDFT components for classifying different PD patterns provides very good overall results.\",\"PeriodicalId\":10532,\"journal\":{\"name\":\"Conference Record of the the 2002 IEEE International Symposium on Electrical Insulation (Cat. No.02CH37316)\",\"volume\":\"64 1\",\"pages\":\"119-123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the the 2002 IEEE International Symposium on Electrical Insulation (Cat. No.02CH37316)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELINSL.2002.995895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the the 2002 IEEE International Symposium on Electrical Insulation (Cat. No.02CH37316)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELINSL.2002.995895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

研究了基于声发射测量和反向传播人工神经网络的局部放电检测、信号分析和模式识别方法。测量信号处理采用三维模式和短时间傅里叶变换(SDFT)。研究表明,结合SDFT分量的BP神经网络对不同PD模式进行分类,总体效果很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of acoustic emission techniques and artificial neural networks to partial discharge classification
Partial discharge (PD) detection, signal analysis and pattern identification, using acoustic emission measurements and the back-propagation (BP) artificial neural network (ANN) have been investigated. The measured signals were processed using three-dimensional patterns and short duration Fourier transforms (SDFT). Investigation indicates that using BP ANN with the SDFT components for classifying different PD patterns provides very good overall results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信