Hutchinson对角估计量的严密分析

Prathamesh Dharangutte, C. Musco
{"title":"Hutchinson对角估计量的严密分析","authors":"Prathamesh Dharangutte, C. Musco","doi":"10.48550/arXiv.2208.03268","DOIUrl":null,"url":null,"abstract":"Let $\\mathbf{A}\\in \\mathbb{R}^{n\\times n}$ be a matrix with diagonal $\\text{diag}(\\mathbf{A})$ and let $\\bar{\\mathbf{A}}$ be $\\mathbf{A}$ with its diagonal set to all zeros. We show that Hutchinson's estimator run for $m$ iterations returns a diagonal estimate $\\tilde{d}\\in \\mathbb{R}^n$ such that with probability $(1-\\delta)$, $$\\|\\tilde{d} - \\text{diag}(\\mathbf{A})\\|_2 \\leq c\\sqrt{\\frac{\\log(2/\\delta)}{m}}\\|\\bar{\\mathbf{A}}\\|_F,$$ where $c$ is a fixed constant independent of all other parameters. This results improves on a recent result of [Baston and Nakatsukasa, 2022] by a $\\log(n)$ factor, yielding a bound that is independent of the matrix dimension $n$.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"226 1","pages":"353-364"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Tight Analysis of Hutchinson's Diagonal Estimator\",\"authors\":\"Prathamesh Dharangutte, C. Musco\",\"doi\":\"10.48550/arXiv.2208.03268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathbf{A}\\\\in \\\\mathbb{R}^{n\\\\times n}$ be a matrix with diagonal $\\\\text{diag}(\\\\mathbf{A})$ and let $\\\\bar{\\\\mathbf{A}}$ be $\\\\mathbf{A}$ with its diagonal set to all zeros. We show that Hutchinson's estimator run for $m$ iterations returns a diagonal estimate $\\\\tilde{d}\\\\in \\\\mathbb{R}^n$ such that with probability $(1-\\\\delta)$, $$\\\\|\\\\tilde{d} - \\\\text{diag}(\\\\mathbf{A})\\\\|_2 \\\\leq c\\\\sqrt{\\\\frac{\\\\log(2/\\\\delta)}{m}}\\\\|\\\\bar{\\\\mathbf{A}}\\\\|_F,$$ where $c$ is a fixed constant independent of all other parameters. This results improves on a recent result of [Baston and Nakatsukasa, 2022] by a $\\\\log(n)$ factor, yielding a bound that is independent of the matrix dimension $n$.\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"226 1\",\"pages\":\"353-364\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.03268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.03268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设$\mathbf{A}\in \mathbb{R}^{n\times n}$为对角线为$\text{diag}(\mathbf{A})$的矩阵,设$\bar{\mathbf{A}}$为$\mathbf{A}$,其对角线全为0。我们展示了运行$m$迭代的Hutchinson估计器返回一个对角线估计$\tilde{d}\in \mathbb{R}^n$,其概率为$(1-\delta)$, $$\|\tilde{d} - \text{diag}(\mathbf{A})\|_2 \leq c\sqrt{\frac{\log(2/\delta)}{m}}\|\bar{\mathbf{A}}\|_F,$$,其中$c$是一个独立于所有其他参数的固定常数。该结果比[Baston和Nakatsukasa, 2022]最近的结果改进了$\log(n)$因子,产生了一个与矩阵维数无关的界$n$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Tight Analysis of Hutchinson's Diagonal Estimator
Let $\mathbf{A}\in \mathbb{R}^{n\times n}$ be a matrix with diagonal $\text{diag}(\mathbf{A})$ and let $\bar{\mathbf{A}}$ be $\mathbf{A}$ with its diagonal set to all zeros. We show that Hutchinson's estimator run for $m$ iterations returns a diagonal estimate $\tilde{d}\in \mathbb{R}^n$ such that with probability $(1-\delta)$, $$\|\tilde{d} - \text{diag}(\mathbf{A})\|_2 \leq c\sqrt{\frac{\log(2/\delta)}{m}}\|\bar{\mathbf{A}}\|_F,$$ where $c$ is a fixed constant independent of all other parameters. This results improves on a recent result of [Baston and Nakatsukasa, 2022] by a $\log(n)$ factor, yielding a bound that is independent of the matrix dimension $n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信