利用V2I传感探头数据实时监测未测路段多类别车辆交通量的可行性

IF 0.8 4区 工程技术 Q4 TRANSPORTATION SCIENCE & TECHNOLOGY
Hyun-ho Chang, Seung-Hwan Cheon
{"title":"利用V2I传感探头数据实时监测未测路段多类别车辆交通量的可行性","authors":"Hyun-ho Chang, Seung-Hwan Cheon","doi":"10.7307/ptt.v34i5.4057","DOIUrl":null,"url":null,"abstract":"Portions of dynamic traffic volumes consisting of multiple vehicle classes are accurately monitored without vehicle detectors using vehicle-to-infrastructure (V2I) communication systems. This offers the feasibility of online monitoring of the total traffic volumes with multi-vehicle classes without any advanced vehicle detectors. To evaluate this prospect, this article presents a method of monitoring dynamic multi-class vehicular traffic volumes in a road location where road-side equipment (RSE) for V2I communication is in operation. The proposed method aims to estimate dynamic total traffic volume data for multiple vehicle classes using the V2I sensing probe volume (i.e. partial vehicular traffic volumes) collected through the RSE. An experimental study was conducted using real-world V2I sensing probe volume data. The results showed that traffic volumes for vehicle types I and II (i.e. cars and heavy vehicles, respectively) can be effectively monitored with average errors of 6.69% and 10.89%, respectively, when the penetration rates of the in-vehicle V2I device for the two vehicle types average 0.384 and 0.537, respectively. The performance of the method in terms of detection error is comparable to those of widely used vehicle detectors. Therefore, V2I sensing probe data for multi-vehicle classes can complement the functions of vehicle detectors because the penetration rate of in-vehicle V2I devices is currently high.","PeriodicalId":54546,"journal":{"name":"Promet-Traffic & Transportation","volume":"32 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility of Using V2I Sensing Probe Data for Real-Time Monitoring of Multi-Class Vehicular Traffic Volumes in Unmeasured Road Locations\",\"authors\":\"Hyun-ho Chang, Seung-Hwan Cheon\",\"doi\":\"10.7307/ptt.v34i5.4057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Portions of dynamic traffic volumes consisting of multiple vehicle classes are accurately monitored without vehicle detectors using vehicle-to-infrastructure (V2I) communication systems. This offers the feasibility of online monitoring of the total traffic volumes with multi-vehicle classes without any advanced vehicle detectors. To evaluate this prospect, this article presents a method of monitoring dynamic multi-class vehicular traffic volumes in a road location where road-side equipment (RSE) for V2I communication is in operation. The proposed method aims to estimate dynamic total traffic volume data for multiple vehicle classes using the V2I sensing probe volume (i.e. partial vehicular traffic volumes) collected through the RSE. An experimental study was conducted using real-world V2I sensing probe volume data. The results showed that traffic volumes for vehicle types I and II (i.e. cars and heavy vehicles, respectively) can be effectively monitored with average errors of 6.69% and 10.89%, respectively, when the penetration rates of the in-vehicle V2I device for the two vehicle types average 0.384 and 0.537, respectively. The performance of the method in terms of detection error is comparable to those of widely used vehicle detectors. Therefore, V2I sensing probe data for multi-vehicle classes can complement the functions of vehicle detectors because the penetration rate of in-vehicle V2I devices is currently high.\",\"PeriodicalId\":54546,\"journal\":{\"name\":\"Promet-Traffic & Transportation\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Promet-Traffic & Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.7307/ptt.v34i5.4057\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promet-Traffic & Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7307/ptt.v34i5.4057","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

使用车辆对基础设施(V2I)通信系统,在没有车辆探测器的情况下,精确监控由多个车辆类别组成的部分动态交通量。这就提供了在没有任何先进的车辆探测器的情况下,对多车辆类别的总交通量进行在线监测的可行性。为了评估这一前景,本文提出了一种在V2I通信的路侧设备(RSE)运行的道路位置监测动态多类别车辆交通量的方法。该方法旨在利用RSE收集的V2I感知探测体积(即部分车辆交通量)来估计多种车辆类别的动态总交通量数据。利用实际V2I传感探头体积数据进行了实验研究。结果表明,当I、II类车辆(分别为轿车和重型车辆)的车载V2I设备普及率平均值分别为0.384和0.537时,可有效监测两类车辆的交通量,平均误差分别为6.69%和10.89%。该方法在检测误差方面的性能可与目前广泛使用的车辆检测器相媲美。因此,由于目前车载V2I设备的普及率较高,多车种的V2I传感探头数据可以补充车载探测器的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feasibility of Using V2I Sensing Probe Data for Real-Time Monitoring of Multi-Class Vehicular Traffic Volumes in Unmeasured Road Locations
Portions of dynamic traffic volumes consisting of multiple vehicle classes are accurately monitored without vehicle detectors using vehicle-to-infrastructure (V2I) communication systems. This offers the feasibility of online monitoring of the total traffic volumes with multi-vehicle classes without any advanced vehicle detectors. To evaluate this prospect, this article presents a method of monitoring dynamic multi-class vehicular traffic volumes in a road location where road-side equipment (RSE) for V2I communication is in operation. The proposed method aims to estimate dynamic total traffic volume data for multiple vehicle classes using the V2I sensing probe volume (i.e. partial vehicular traffic volumes) collected through the RSE. An experimental study was conducted using real-world V2I sensing probe volume data. The results showed that traffic volumes for vehicle types I and II (i.e. cars and heavy vehicles, respectively) can be effectively monitored with average errors of 6.69% and 10.89%, respectively, when the penetration rates of the in-vehicle V2I device for the two vehicle types average 0.384 and 0.537, respectively. The performance of the method in terms of detection error is comparable to those of widely used vehicle detectors. Therefore, V2I sensing probe data for multi-vehicle classes can complement the functions of vehicle detectors because the penetration rate of in-vehicle V2I devices is currently high.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Promet-Traffic & Transportation
Promet-Traffic & Transportation 工程技术-运输科技
CiteScore
1.90
自引率
20.00%
发文量
62
审稿时长
3 months
期刊介绍: This scientific journal publishes scientific papers in the area of technical sciences, field of transport and traffic technology. The basic guidelines of the journal, which support the mission - promotion of transport science, are: relevancy of published papers and reviewer competency, established identity in the print and publishing profile, as well as other formal and informal details. The journal organisation consists of the Editorial Board, Editors, Reviewer Selection Committee and the Scientific Advisory Committee. The received papers are subject to peer review in accordance with the recommendations for international scientific journals. The papers published in the journal are placed in sections which explain their focus in more detail. The sections are: transportation economy, information and communication technology, intelligent transport systems, human-transport interaction, intermodal transport, education in traffic and transport, traffic planning, traffic and environment (ecology), traffic on motorways, traffic in the cities, transport and sustainable development, traffic and space, traffic infrastructure, traffic policy, transport engineering, transport law, safety and security in traffic, transport logistics, transport technology, transport telematics, internal transport, traffic management, science in traffic and transport, traffic engineering, transport in emergency situations, swarm intelligence in transportation engineering. The Journal also publishes information not subject to review, and classified under the following headings: book and other reviews, symposia, conferences and exhibitions, scientific cooperation, anniversaries, portraits, bibliographies, publisher information, news, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信