{"title":"利用V2I传感探头数据实时监测未测路段多类别车辆交通量的可行性","authors":"Hyun-ho Chang, Seung-Hwan Cheon","doi":"10.7307/ptt.v34i5.4057","DOIUrl":null,"url":null,"abstract":"Portions of dynamic traffic volumes consisting of multiple vehicle classes are accurately monitored without vehicle detectors using vehicle-to-infrastructure (V2I) communication systems. This offers the feasibility of online monitoring of the total traffic volumes with multi-vehicle classes without any advanced vehicle detectors. To evaluate this prospect, this article presents a method of monitoring dynamic multi-class vehicular traffic volumes in a road location where road-side equipment (RSE) for V2I communication is in operation. The proposed method aims to estimate dynamic total traffic volume data for multiple vehicle classes using the V2I sensing probe volume (i.e. partial vehicular traffic volumes) collected through the RSE. An experimental study was conducted using real-world V2I sensing probe volume data. The results showed that traffic volumes for vehicle types I and II (i.e. cars and heavy vehicles, respectively) can be effectively monitored with average errors of 6.69% and 10.89%, respectively, when the penetration rates of the in-vehicle V2I device for the two vehicle types average 0.384 and 0.537, respectively. The performance of the method in terms of detection error is comparable to those of widely used vehicle detectors. Therefore, V2I sensing probe data for multi-vehicle classes can complement the functions of vehicle detectors because the penetration rate of in-vehicle V2I devices is currently high.","PeriodicalId":54546,"journal":{"name":"Promet-Traffic & Transportation","volume":"32 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility of Using V2I Sensing Probe Data for Real-Time Monitoring of Multi-Class Vehicular Traffic Volumes in Unmeasured Road Locations\",\"authors\":\"Hyun-ho Chang, Seung-Hwan Cheon\",\"doi\":\"10.7307/ptt.v34i5.4057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Portions of dynamic traffic volumes consisting of multiple vehicle classes are accurately monitored without vehicle detectors using vehicle-to-infrastructure (V2I) communication systems. This offers the feasibility of online monitoring of the total traffic volumes with multi-vehicle classes without any advanced vehicle detectors. To evaluate this prospect, this article presents a method of monitoring dynamic multi-class vehicular traffic volumes in a road location where road-side equipment (RSE) for V2I communication is in operation. The proposed method aims to estimate dynamic total traffic volume data for multiple vehicle classes using the V2I sensing probe volume (i.e. partial vehicular traffic volumes) collected through the RSE. An experimental study was conducted using real-world V2I sensing probe volume data. The results showed that traffic volumes for vehicle types I and II (i.e. cars and heavy vehicles, respectively) can be effectively monitored with average errors of 6.69% and 10.89%, respectively, when the penetration rates of the in-vehicle V2I device for the two vehicle types average 0.384 and 0.537, respectively. The performance of the method in terms of detection error is comparable to those of widely used vehicle detectors. Therefore, V2I sensing probe data for multi-vehicle classes can complement the functions of vehicle detectors because the penetration rate of in-vehicle V2I devices is currently high.\",\"PeriodicalId\":54546,\"journal\":{\"name\":\"Promet-Traffic & Transportation\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Promet-Traffic & Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.7307/ptt.v34i5.4057\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promet-Traffic & Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7307/ptt.v34i5.4057","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Feasibility of Using V2I Sensing Probe Data for Real-Time Monitoring of Multi-Class Vehicular Traffic Volumes in Unmeasured Road Locations
Portions of dynamic traffic volumes consisting of multiple vehicle classes are accurately monitored without vehicle detectors using vehicle-to-infrastructure (V2I) communication systems. This offers the feasibility of online monitoring of the total traffic volumes with multi-vehicle classes without any advanced vehicle detectors. To evaluate this prospect, this article presents a method of monitoring dynamic multi-class vehicular traffic volumes in a road location where road-side equipment (RSE) for V2I communication is in operation. The proposed method aims to estimate dynamic total traffic volume data for multiple vehicle classes using the V2I sensing probe volume (i.e. partial vehicular traffic volumes) collected through the RSE. An experimental study was conducted using real-world V2I sensing probe volume data. The results showed that traffic volumes for vehicle types I and II (i.e. cars and heavy vehicles, respectively) can be effectively monitored with average errors of 6.69% and 10.89%, respectively, when the penetration rates of the in-vehicle V2I device for the two vehicle types average 0.384 and 0.537, respectively. The performance of the method in terms of detection error is comparable to those of widely used vehicle detectors. Therefore, V2I sensing probe data for multi-vehicle classes can complement the functions of vehicle detectors because the penetration rate of in-vehicle V2I devices is currently high.
期刊介绍:
This scientific journal publishes scientific papers in the area of technical sciences, field of transport and traffic technology.
The basic guidelines of the journal, which support the mission - promotion of transport science, are: relevancy of published papers and reviewer competency, established identity in the print and publishing profile, as well as other formal and informal details. The journal organisation consists of the Editorial Board, Editors, Reviewer Selection Committee and the Scientific Advisory Committee.
The received papers are subject to peer review in accordance with the recommendations for international scientific journals.
The papers published in the journal are placed in sections which explain their focus in more detail. The sections are: transportation economy, information and communication technology, intelligent transport systems, human-transport interaction, intermodal transport, education in traffic and transport, traffic planning, traffic and environment (ecology), traffic on motorways, traffic in the cities, transport and sustainable development, traffic and space, traffic infrastructure, traffic policy, transport engineering, transport law, safety and security in traffic, transport logistics, transport technology, transport telematics, internal transport, traffic management, science in traffic and transport, traffic engineering, transport in emergency situations, swarm intelligence in transportation engineering.
The Journal also publishes information not subject to review, and classified under the following headings: book and other reviews, symposia, conferences and exhibitions, scientific cooperation, anniversaries, portraits, bibliographies, publisher information, news, etc.