协同网联车辆的多智能体深度强化学习

Dohyun Kwon, Joongheon Kim
{"title":"协同网联车辆的多智能体深度强化学习","authors":"Dohyun Kwon, Joongheon Kim","doi":"10.1109/GLOBECOM38437.2019.9014151","DOIUrl":null,"url":null,"abstract":"Millimeter-wave (mmWave) base station can offer abundant high capacity channel resources toward connected vehicles so that quality-of-service (QoS) of them in terms of downlink throughput can be highly improved. The mmWave base station can operate among existing base stations (e.g., macro- cell base station) on non-overlapped channels among them and the vehicles can make decision what base station to associate, and what channel to utilize on heterogeneous networks. Furthermore, because of the non-omni property of mmWave communication, the vehicles decide how to align the beam direction toward mmWave base station to associate with it. However, such joint problem requires high computational cost, which is NP-hard and has combinatorial features. In this paper, we solve the problem in 3-tier heterogeneous vehicular network (HetVNet) with multi-agent deep reinforcement learning (DRL) in a way that maximizes expected total reward (i.e., downlink throughput) of vehicles. The multi-agent deep deterministic policy gradient (MADDPG) approach is introduced to achieve optimal policy in continuous action domain.","PeriodicalId":6868,"journal":{"name":"2019 IEEE Global Communications Conference (GLOBECOM)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Multi-Agent Deep Reinforcement Learning for Cooperative Connected Vehicles\",\"authors\":\"Dohyun Kwon, Joongheon Kim\",\"doi\":\"10.1109/GLOBECOM38437.2019.9014151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Millimeter-wave (mmWave) base station can offer abundant high capacity channel resources toward connected vehicles so that quality-of-service (QoS) of them in terms of downlink throughput can be highly improved. The mmWave base station can operate among existing base stations (e.g., macro- cell base station) on non-overlapped channels among them and the vehicles can make decision what base station to associate, and what channel to utilize on heterogeneous networks. Furthermore, because of the non-omni property of mmWave communication, the vehicles decide how to align the beam direction toward mmWave base station to associate with it. However, such joint problem requires high computational cost, which is NP-hard and has combinatorial features. In this paper, we solve the problem in 3-tier heterogeneous vehicular network (HetVNet) with multi-agent deep reinforcement learning (DRL) in a way that maximizes expected total reward (i.e., downlink throughput) of vehicles. The multi-agent deep deterministic policy gradient (MADDPG) approach is introduced to achieve optimal policy in continuous action domain.\",\"PeriodicalId\":6868,\"journal\":{\"name\":\"2019 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM38437.2019.9014151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM38437.2019.9014151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

毫米波(mmWave)基站可以为互联车辆提供丰富的高容量信道资源,从而大大提高互联车辆的下行吞吐量服务质量(QoS)。毫米波基站可以在现有基站(例如宏蜂窝基站)之间的非重叠信道上运行,车辆可以决定要关联哪个基站,以及在异构网络上使用哪个信道。此外,由于毫米波通信的非全局性,车辆决定如何将波束方向对准毫米波基站以与之关联。然而,这种联合问题需要较高的计算成本,具有NP-hard和组合特征。在本文中,我们使用多智能体深度强化学习(DRL)以最大化车辆的预期总奖励(即下行吞吐量)的方式解决了三层异构车辆网络(HetVNet)中的问题。引入多智能体深度确定性策略梯度(madpg)方法来实现连续动作域的最优策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Agent Deep Reinforcement Learning for Cooperative Connected Vehicles
Millimeter-wave (mmWave) base station can offer abundant high capacity channel resources toward connected vehicles so that quality-of-service (QoS) of them in terms of downlink throughput can be highly improved. The mmWave base station can operate among existing base stations (e.g., macro- cell base station) on non-overlapped channels among them and the vehicles can make decision what base station to associate, and what channel to utilize on heterogeneous networks. Furthermore, because of the non-omni property of mmWave communication, the vehicles decide how to align the beam direction toward mmWave base station to associate with it. However, such joint problem requires high computational cost, which is NP-hard and has combinatorial features. In this paper, we solve the problem in 3-tier heterogeneous vehicular network (HetVNet) with multi-agent deep reinforcement learning (DRL) in a way that maximizes expected total reward (i.e., downlink throughput) of vehicles. The multi-agent deep deterministic policy gradient (MADDPG) approach is introduced to achieve optimal policy in continuous action domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信