基于线粒体DNA序列变异的杂交猪现代品系的遗传多样性

Yelyzaveta Budakva, K. Pochernyaev, S. Korinnyi, M. Povod
{"title":"基于线粒体DNA序列变异的杂交猪现代品系的遗传多样性","authors":"Yelyzaveta Budakva, K. Pochernyaev, S. Korinnyi, M. Povod","doi":"10.15407/animbiol24.03.003","DOIUrl":null,"url":null,"abstract":"In the study, we evaluated the genetic specificity of haplotypes in the population of hybrid gilts (Large White × Landrace), (Landrace × Large White) from the SPE “Globinsky Pig Complex” LLC and breeding sows of the Large White breed from the SE “DG named after January 9th” using polymorphism of the lengths of the restricted fragments of mtDNA. The purpose of the study was to determine if the process of creating specialized parent lines (of modern cross-border breeds) reduces haplotype diversity. As a genetic material, bristles from sows of the Large White breed (n=7) were used and epithelial tissue of pigs (Large White × Landrace), (Landrace × Large White) — (n=37). DNA release from bristle samples was carried out using ion exchange resin Chelex-100. For the study of the D-loop of the mitochondrial genome of hybrid pigs (n=37) from the epithelial tissue of the auricle, a set of DNA-sorb-B nucleic acid extraction kit from “InterLabService-Ukraine” LLC was used. The samples of epithelial tissue of pigs’ ears were treated with fire from fuel tablet. For the analysis of the mitochondrial genome, the method of polymorphism of the lengths of restricted fragments was used, amplified with PCR. Genotyping of DNA samples of experimental pigs according to mitochondrial markers was carried out with the involvement of the polysite method in accordance with the methodological recommendations of K. F. Pochernyaev and M. D. Berezovsky (2014). The use of maternal inheritance type markers (mtDNA) allowed to identify 2 maternal lines with specific haplotypes, which participated in the creation of hybrid pigs and the formation of their haplogroup. The genetic diversity of mtDNA subspecies of wild and domesticated pigs is limited by the existing lines. Therefore, one haplotype of the mitochondrial genome does not indicate a specific breed, since, several breeds have the same haplotype mtDNA — A, G, C, N, and O. The concentration of haplotype A in tribal sows of Large White breed with a frequency (16%). In the hybrid gilts (Large White × Landrace), (Landrace × Large White) the concentration of detected haplotypes is: C (n=9) — Landrace, Hampshire, Wales, wild pig (20.5%); G — (n=5) Wales, wild pig (11.4%); O (n=5) — Landrace, wild pig (11.4%); N (n=11) — Large White, Berkshire, Asian wild pig (25%); D 9%, K 6.8% (n=7) — unknown among the breeds of domestic pig. We assume that pigs of a Large White breed with haplotype A and hybrid pigs (Large White × Landrace), (Landrace × Large White) with haplotype G, O, in particular D, K contain aboriginal genetic resources. However, in the middle of the XX century, subspecies of wild and domesticated pig breeds became less population-like due to decrease in the area of cultivation and increased pressure from foreign breeds with high growth rates and breeding grounds. Thus, there is a risk of extinction — existing haplotypes and those which have not yet been identified among domesticated pigs (D, K). This suggests that the study should focus on classifying and identifying the phylogenetic origin of pigs and the creation of a molecular genetic bank of producer boars for environmental activities. The domestication process puts strong selective pressure on Sus scrofa species through genetic processes such as inbreeding, genetic drift, natural and artificial selection according to the desired signs. Over the past 9–10,000 years, human intervention has led to domesticated species that are morphologically, behaviorally, and genetically different from their ancestors’ relatives. We believe that the “hybrid” subspecies of wild pigs with some morphological features of a domesticated pig had a higher proportion of the full-genomic ancestors of a domestic pig compared to the morphologically pure subspecies of wild pigs. Animals with haplotypes D, K are the result of hybridization with European boars. Representatives of haplotypes A (Large White, European-type Duroc, Mangalica); G (Wales, wild pig) — Italy; C (Landrace, Wales, Hampshire, wild pig) — Ukraine, Poland, France; O (landrace, wild pig) — Sweden, grouped into the European cluster of “mt-E” haplogroup. Pigs with the haplotype N — Large White (Asian type), Berkshire, a wild pig belongs to the Asian cluster of “mt-A” haplogroup. Over time, this led to almost complete disappearance of primary Middle Eastern ancestors in the nuclear genomes of European domesticated pigs. Phylogenetic reconstruction of mitochondrial genome data from hybrid pigs reflects a clear geographical division of mtDNA data — Eastern Europe and Asia. In particular, the subspecies of European and Asian wild pigs is the ancestral foundation on the maternal line, which preceded domestication and breeding pigs by hybridization. European and Asian haplotypes of wild pigs have shown that wild pigs from regions such as Italy, Poland, France, Scandinavia, and Ukraine were also either domesticated or at least initially included in domesticated pigs. The results of the study of the S. s. domestica mitochondrial genome showed an intra-breed genetic diversity of hybrid gilts. This is due to the selection strategy of international genetic centers, where, despite the consolidation of the genetic structure in the inside of the center, significant general genetic diversity of the breed is ensured. In addition, the above results indicate a connection between the frequency distribution of mtDNA haplotypes and adaptation to different climate conditions. As a whole, the presented results are an incentive to continue research on the study of the mitochondrial genome of modern lines of hybrid pigs. Carriers of haplotype C, O, G, and N are the basis of maternal breeding and improvement of the lines of hybrid pigs of the XXI century. It is necessary to take into account the fact that the cleanest mother nuclei (Wild pig, Great Yorkshire, Landrace) are really clean foundation for use in hybridization schemes, in the crossing over, in the formation and development of modern hybrid lines of pigs. Despite this, the diversity of the mitochondrial genome in the population of transboundary breeds persists.","PeriodicalId":22372,"journal":{"name":"The Animal Biology","volume":"224 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic diversity of modern lines of hybrid pigs based on variations in mitochondrial DNA sequence\",\"authors\":\"Yelyzaveta Budakva, K. Pochernyaev, S. Korinnyi, M. Povod\",\"doi\":\"10.15407/animbiol24.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the study, we evaluated the genetic specificity of haplotypes in the population of hybrid gilts (Large White × Landrace), (Landrace × Large White) from the SPE “Globinsky Pig Complex” LLC and breeding sows of the Large White breed from the SE “DG named after January 9th” using polymorphism of the lengths of the restricted fragments of mtDNA. The purpose of the study was to determine if the process of creating specialized parent lines (of modern cross-border breeds) reduces haplotype diversity. As a genetic material, bristles from sows of the Large White breed (n=7) were used and epithelial tissue of pigs (Large White × Landrace), (Landrace × Large White) — (n=37). DNA release from bristle samples was carried out using ion exchange resin Chelex-100. For the study of the D-loop of the mitochondrial genome of hybrid pigs (n=37) from the epithelial tissue of the auricle, a set of DNA-sorb-B nucleic acid extraction kit from “InterLabService-Ukraine” LLC was used. The samples of epithelial tissue of pigs’ ears were treated with fire from fuel tablet. For the analysis of the mitochondrial genome, the method of polymorphism of the lengths of restricted fragments was used, amplified with PCR. Genotyping of DNA samples of experimental pigs according to mitochondrial markers was carried out with the involvement of the polysite method in accordance with the methodological recommendations of K. F. Pochernyaev and M. D. Berezovsky (2014). The use of maternal inheritance type markers (mtDNA) allowed to identify 2 maternal lines with specific haplotypes, which participated in the creation of hybrid pigs and the formation of their haplogroup. The genetic diversity of mtDNA subspecies of wild and domesticated pigs is limited by the existing lines. Therefore, one haplotype of the mitochondrial genome does not indicate a specific breed, since, several breeds have the same haplotype mtDNA — A, G, C, N, and O. The concentration of haplotype A in tribal sows of Large White breed with a frequency (16%). In the hybrid gilts (Large White × Landrace), (Landrace × Large White) the concentration of detected haplotypes is: C (n=9) — Landrace, Hampshire, Wales, wild pig (20.5%); G — (n=5) Wales, wild pig (11.4%); O (n=5) — Landrace, wild pig (11.4%); N (n=11) — Large White, Berkshire, Asian wild pig (25%); D 9%, K 6.8% (n=7) — unknown among the breeds of domestic pig. We assume that pigs of a Large White breed with haplotype A and hybrid pigs (Large White × Landrace), (Landrace × Large White) with haplotype G, O, in particular D, K contain aboriginal genetic resources. However, in the middle of the XX century, subspecies of wild and domesticated pig breeds became less population-like due to decrease in the area of cultivation and increased pressure from foreign breeds with high growth rates and breeding grounds. Thus, there is a risk of extinction — existing haplotypes and those which have not yet been identified among domesticated pigs (D, K). This suggests that the study should focus on classifying and identifying the phylogenetic origin of pigs and the creation of a molecular genetic bank of producer boars for environmental activities. The domestication process puts strong selective pressure on Sus scrofa species through genetic processes such as inbreeding, genetic drift, natural and artificial selection according to the desired signs. Over the past 9–10,000 years, human intervention has led to domesticated species that are morphologically, behaviorally, and genetically different from their ancestors’ relatives. We believe that the “hybrid” subspecies of wild pigs with some morphological features of a domesticated pig had a higher proportion of the full-genomic ancestors of a domestic pig compared to the morphologically pure subspecies of wild pigs. Animals with haplotypes D, K are the result of hybridization with European boars. Representatives of haplotypes A (Large White, European-type Duroc, Mangalica); G (Wales, wild pig) — Italy; C (Landrace, Wales, Hampshire, wild pig) — Ukraine, Poland, France; O (landrace, wild pig) — Sweden, grouped into the European cluster of “mt-E” haplogroup. Pigs with the haplotype N — Large White (Asian type), Berkshire, a wild pig belongs to the Asian cluster of “mt-A” haplogroup. Over time, this led to almost complete disappearance of primary Middle Eastern ancestors in the nuclear genomes of European domesticated pigs. Phylogenetic reconstruction of mitochondrial genome data from hybrid pigs reflects a clear geographical division of mtDNA data — Eastern Europe and Asia. In particular, the subspecies of European and Asian wild pigs is the ancestral foundation on the maternal line, which preceded domestication and breeding pigs by hybridization. European and Asian haplotypes of wild pigs have shown that wild pigs from regions such as Italy, Poland, France, Scandinavia, and Ukraine were also either domesticated or at least initially included in domesticated pigs. The results of the study of the S. s. domestica mitochondrial genome showed an intra-breed genetic diversity of hybrid gilts. This is due to the selection strategy of international genetic centers, where, despite the consolidation of the genetic structure in the inside of the center, significant general genetic diversity of the breed is ensured. In addition, the above results indicate a connection between the frequency distribution of mtDNA haplotypes and adaptation to different climate conditions. As a whole, the presented results are an incentive to continue research on the study of the mitochondrial genome of modern lines of hybrid pigs. Carriers of haplotype C, O, G, and N are the basis of maternal breeding and improvement of the lines of hybrid pigs of the XXI century. It is necessary to take into account the fact that the cleanest mother nuclei (Wild pig, Great Yorkshire, Landrace) are really clean foundation for use in hybridization schemes, in the crossing over, in the formation and development of modern hybrid lines of pigs. Despite this, the diversity of the mitochondrial genome in the population of transboundary breeds persists.\",\"PeriodicalId\":22372,\"journal\":{\"name\":\"The Animal Biology\",\"volume\":\"224 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Animal Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/animbiol24.03.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Animal Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/animbiol24.03.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用mtDNA限制性片段长度的多态性,对SPE“Globinsky猪复合体”有限责任公司的“大白×长白”、“长白×大白”杂交母猪群体和以“1月9日”命名的“DG”大白猪种母猪群体的单倍型遗传特异性进行了评价。该研究的目的是确定创造专一亲本系(现代跨界品种)的过程是否会降低单倍型多样性。遗传材料选用大白母猪(n=7)的刚毛和猪(大白×长白)、(长白×大白)的上皮组织(n=37)。利用离子交换树脂Chelex-100对猪鬃样品进行DNA释放。杂交猪(n=37)耳廓上皮组织线粒体基因组d环的研究,采用“InterLabService-Ukraine”LLC公司的DNA-sorb-B核酸提取试剂盒。用燃料片火处理猪耳上皮组织样品。线粒体基因组分析采用限制性片段长度多态性方法,用PCR扩增。根据K. F. Pochernyaev和M. D. Berezovsky(2014)的方法学建议,利用聚多糖法对实验猪的DNA样本进行线粒体标记基因分型。利用母体遗传型标记(mtDNA)鉴定出具有特定单倍型的2个母系,它们参与杂交猪的产生和单倍群的形成。野生猪和家猪mtDNA亚种的遗传多样性受到现有品系的限制。因此,一个线粒体基因组的单倍型并不代表一个特定的品种,因为几个品种具有相同的单倍型mtDNA - a, G, C, N和o。大白品种的部落母猪中单倍型a的浓度频率为16%。在杂交后备母猪(大白×长白)中,(长白×大白)检测到的单倍型浓度为:C (n=9) -长白、汉普郡、威尔士、野猪(20.5%);G - (n=5)威尔士,野猪(11.4%);0 (n=5) -长白猪,野猪(11.4%);N (N =11) -大白,伯克夏,亚洲野猪(25%);D 9%, K 6.8% (n=7) -家猪品种中未知。我们假设单倍型为a的大白猪和单倍型为G、O,特别是D、K的杂交猪(大白×长白)含有土著遗传资源。然而,在20世纪中叶,由于养殖面积的减少以及来自具有高生长率和繁殖地的外国品种的压力增加,野生和家养猪品种的亚种变得不那么像种群。因此,存在着灭绝的风险——在家猪中存在的单倍型和那些尚未被识别的单倍型(D, K)。这表明,研究应侧重于对猪的系统发育起源进行分类和识别,并建立一个用于环境活动的生产公猪分子基因库。驯化过程通过近交、遗传漂变、自然选择和人工选择等遗传过程,对竹属植物施加了强烈的选择压力。在过去的9 - 1万年里,人类的干预导致驯化的物种在形态、行为和基因上都与它们的祖先亲戚不同。我们认为,与形态纯粹的野猪亚种相比,具有某些家猪形态特征的野猪“杂交”亚种具有更高比例的家猪全基因组祖先。D、K单倍型动物是与欧洲公猪杂交的结果。单倍型A的代表(大白、欧洲型杜洛克、曼加利察);G(威尔士野猪)-意大利;C(长白猪,威尔士,汉普郡,野猪)-乌克兰,波兰,法国;O(长白猪,野猪)-瑞典,归入“mt-E”单倍群的欧洲群。猪的单倍型N -大白猪(亚洲型),伯克夏,一种野猪,属于“mt-A”单倍群的亚洲集群。随着时间的推移,这导致欧洲家猪的核基因组中几乎完全消失了主要的中东祖先。杂种猪线粒体基因组数据的系统发育重建反映了mtDNA数据的明确地理划分-东欧和亚洲。特别是,欧洲和亚洲野猪的亚种是母系的祖先基础,它先于驯化和杂交种猪。欧洲和亚洲野猪的单倍型表明,来自意大利、波兰、法国、斯堪的纳维亚和乌克兰等地区的野猪也被驯化,或者至少最初被包括在驯化猪中。研究结果表明,S。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic diversity of modern lines of hybrid pigs based on variations in mitochondrial DNA sequence
In the study, we evaluated the genetic specificity of haplotypes in the population of hybrid gilts (Large White × Landrace), (Landrace × Large White) from the SPE “Globinsky Pig Complex” LLC and breeding sows of the Large White breed from the SE “DG named after January 9th” using polymorphism of the lengths of the restricted fragments of mtDNA. The purpose of the study was to determine if the process of creating specialized parent lines (of modern cross-border breeds) reduces haplotype diversity. As a genetic material, bristles from sows of the Large White breed (n=7) were used and epithelial tissue of pigs (Large White × Landrace), (Landrace × Large White) — (n=37). DNA release from bristle samples was carried out using ion exchange resin Chelex-100. For the study of the D-loop of the mitochondrial genome of hybrid pigs (n=37) from the epithelial tissue of the auricle, a set of DNA-sorb-B nucleic acid extraction kit from “InterLabService-Ukraine” LLC was used. The samples of epithelial tissue of pigs’ ears were treated with fire from fuel tablet. For the analysis of the mitochondrial genome, the method of polymorphism of the lengths of restricted fragments was used, amplified with PCR. Genotyping of DNA samples of experimental pigs according to mitochondrial markers was carried out with the involvement of the polysite method in accordance with the methodological recommendations of K. F. Pochernyaev and M. D. Berezovsky (2014). The use of maternal inheritance type markers (mtDNA) allowed to identify 2 maternal lines with specific haplotypes, which participated in the creation of hybrid pigs and the formation of their haplogroup. The genetic diversity of mtDNA subspecies of wild and domesticated pigs is limited by the existing lines. Therefore, one haplotype of the mitochondrial genome does not indicate a specific breed, since, several breeds have the same haplotype mtDNA — A, G, C, N, and O. The concentration of haplotype A in tribal sows of Large White breed with a frequency (16%). In the hybrid gilts (Large White × Landrace), (Landrace × Large White) the concentration of detected haplotypes is: C (n=9) — Landrace, Hampshire, Wales, wild pig (20.5%); G — (n=5) Wales, wild pig (11.4%); O (n=5) — Landrace, wild pig (11.4%); N (n=11) — Large White, Berkshire, Asian wild pig (25%); D 9%, K 6.8% (n=7) — unknown among the breeds of domestic pig. We assume that pigs of a Large White breed with haplotype A and hybrid pigs (Large White × Landrace), (Landrace × Large White) with haplotype G, O, in particular D, K contain aboriginal genetic resources. However, in the middle of the XX century, subspecies of wild and domesticated pig breeds became less population-like due to decrease in the area of cultivation and increased pressure from foreign breeds with high growth rates and breeding grounds. Thus, there is a risk of extinction — existing haplotypes and those which have not yet been identified among domesticated pigs (D, K). This suggests that the study should focus on classifying and identifying the phylogenetic origin of pigs and the creation of a molecular genetic bank of producer boars for environmental activities. The domestication process puts strong selective pressure on Sus scrofa species through genetic processes such as inbreeding, genetic drift, natural and artificial selection according to the desired signs. Over the past 9–10,000 years, human intervention has led to domesticated species that are morphologically, behaviorally, and genetically different from their ancestors’ relatives. We believe that the “hybrid” subspecies of wild pigs with some morphological features of a domesticated pig had a higher proportion of the full-genomic ancestors of a domestic pig compared to the morphologically pure subspecies of wild pigs. Animals with haplotypes D, K are the result of hybridization with European boars. Representatives of haplotypes A (Large White, European-type Duroc, Mangalica); G (Wales, wild pig) — Italy; C (Landrace, Wales, Hampshire, wild pig) — Ukraine, Poland, France; O (landrace, wild pig) — Sweden, grouped into the European cluster of “mt-E” haplogroup. Pigs with the haplotype N — Large White (Asian type), Berkshire, a wild pig belongs to the Asian cluster of “mt-A” haplogroup. Over time, this led to almost complete disappearance of primary Middle Eastern ancestors in the nuclear genomes of European domesticated pigs. Phylogenetic reconstruction of mitochondrial genome data from hybrid pigs reflects a clear geographical division of mtDNA data — Eastern Europe and Asia. In particular, the subspecies of European and Asian wild pigs is the ancestral foundation on the maternal line, which preceded domestication and breeding pigs by hybridization. European and Asian haplotypes of wild pigs have shown that wild pigs from regions such as Italy, Poland, France, Scandinavia, and Ukraine were also either domesticated or at least initially included in domesticated pigs. The results of the study of the S. s. domestica mitochondrial genome showed an intra-breed genetic diversity of hybrid gilts. This is due to the selection strategy of international genetic centers, where, despite the consolidation of the genetic structure in the inside of the center, significant general genetic diversity of the breed is ensured. In addition, the above results indicate a connection between the frequency distribution of mtDNA haplotypes and adaptation to different climate conditions. As a whole, the presented results are an incentive to continue research on the study of the mitochondrial genome of modern lines of hybrid pigs. Carriers of haplotype C, O, G, and N are the basis of maternal breeding and improvement of the lines of hybrid pigs of the XXI century. It is necessary to take into account the fact that the cleanest mother nuclei (Wild pig, Great Yorkshire, Landrace) are really clean foundation for use in hybridization schemes, in the crossing over, in the formation and development of modern hybrid lines of pigs. Despite this, the diversity of the mitochondrial genome in the population of transboundary breeds persists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信