使用液化天然气的二冲程船用柴油机的能源特定温室气体排放测量

IF 1.5 4区 工程技术 Q3 ENGINEERING, MARINE
Kang-Ki Lee, Wilfried Hochegger, A. Schönborn
{"title":"使用液化天然气的二冲程船用柴油机的能源特定温室气体排放测量","authors":"Kang-Ki Lee, Wilfried Hochegger, A. Schönborn","doi":"10.1177/14750902231166442","DOIUrl":null,"url":null,"abstract":"This study reports the energy specific air emissions from a diesel-cycle high pressure injection dual fuel engine for operation on liquefied natural gas and heavy fuel oil. An experiment at sea was performed onboard a bulk carrier during commercial voyages, to measure the efficiency of the engine and to measure air emissions relevant to air pollution and climate impact for operation on both fuels. The measurements showed that the energy conversion efficiency of the engine was higher for operation on liquefied natural gas because its lower NOx emissions permitted the use of a higher effective compression ratio whilst meeting the same NOx emissions level. The results showed that the climate impact for operation on heavy fuel oil was 2.1–2.3 times higher than for liquefied natural gas at 50% load, if considering only the emissions occurring at the engine. Analysis of the air emissions for their individual contributions to climate impacts suggested that black carbon had the strongest climate impact of all air emissions in the case of operation on heavy fuel oil. For operation on liquefied natural gas, CO2 had the strongest individual climate impact amongst the air emissions from the engine.","PeriodicalId":20667,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","volume":"7 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Energy-specific greenhouse gas emissions measurements from 2-stroke marine diesel engine using liquefied natural gas\",\"authors\":\"Kang-Ki Lee, Wilfried Hochegger, A. Schönborn\",\"doi\":\"10.1177/14750902231166442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study reports the energy specific air emissions from a diesel-cycle high pressure injection dual fuel engine for operation on liquefied natural gas and heavy fuel oil. An experiment at sea was performed onboard a bulk carrier during commercial voyages, to measure the efficiency of the engine and to measure air emissions relevant to air pollution and climate impact for operation on both fuels. The measurements showed that the energy conversion efficiency of the engine was higher for operation on liquefied natural gas because its lower NOx emissions permitted the use of a higher effective compression ratio whilst meeting the same NOx emissions level. The results showed that the climate impact for operation on heavy fuel oil was 2.1–2.3 times higher than for liquefied natural gas at 50% load, if considering only the emissions occurring at the engine. Analysis of the air emissions for their individual contributions to climate impacts suggested that black carbon had the strongest climate impact of all air emissions in the case of operation on heavy fuel oil. For operation on liquefied natural gas, CO2 had the strongest individual climate impact amongst the air emissions from the engine.\",\"PeriodicalId\":20667,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14750902231166442\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902231166442","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 2

摘要

本研究报告了一种以液化天然气和重质燃料油为燃料的柴油循环高压喷射双燃料发动机的能量比空气排放。在商业航行期间,在一艘散货船上进行了海上实验,以测量发动机的效率,并测量两种燃料运行时与空气污染和气候影响相关的空气排放。测量结果表明,液化天然气发动机的能量转换效率更高,因为其较低的氮氧化物排放允许使用更高的有效压缩比,同时满足相同的氮氧化物排放水平。结果表明,如果只考虑发动机排放,重质燃料油在50%负荷下的运行气候影响是液化天然气的2.1-2.3倍。对空气排放对气候影响的个别贡献的分析表明,在使用重质燃料油的情况下,黑碳对所有空气排放的气候影响最大。在使用液化天然气的情况下,在发动机排放的空气中,二氧化碳对气候的影响最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-specific greenhouse gas emissions measurements from 2-stroke marine diesel engine using liquefied natural gas
This study reports the energy specific air emissions from a diesel-cycle high pressure injection dual fuel engine for operation on liquefied natural gas and heavy fuel oil. An experiment at sea was performed onboard a bulk carrier during commercial voyages, to measure the efficiency of the engine and to measure air emissions relevant to air pollution and climate impact for operation on both fuels. The measurements showed that the energy conversion efficiency of the engine was higher for operation on liquefied natural gas because its lower NOx emissions permitted the use of a higher effective compression ratio whilst meeting the same NOx emissions level. The results showed that the climate impact for operation on heavy fuel oil was 2.1–2.3 times higher than for liquefied natural gas at 50% load, if considering only the emissions occurring at the engine. Analysis of the air emissions for their individual contributions to climate impacts suggested that black carbon had the strongest climate impact of all air emissions in the case of operation on heavy fuel oil. For operation on liquefied natural gas, CO2 had the strongest individual climate impact amongst the air emissions from the engine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
11.10%
发文量
77
审稿时长
>12 weeks
期刊介绍: The Journal of Engineering for the Maritime Environment is concerned with the design, production and operation of engineering artefacts for the maritime environment. The journal straddles the traditional boundaries of naval architecture, marine engineering, offshore/ocean engineering, coastal engineering and port engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信