多输出函数映射技术降低fpga动态功耗

IF 1.6 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
A. Opara, M. Kubica
{"title":"多输出函数映射技术降低fpga动态功耗","authors":"A. Opara, M. Kubica","doi":"10.34768/amcs-2023-0020","DOIUrl":null,"url":null,"abstract":"Abstract This article presents a synthesis strategy aimed at minimizing the dynamic power consumption of combinational circuits mapped in LUT blocks of FPGAs. The implemented circuits represent the mapping of multi-output functions. Properly selected multi-output functions are described using a new form of the binary decision diagram (BDD), which is an extension of pseudomulti-terminal BDDs (PMTBDDs) in the literature. The essence of limiting power consumption is to include additional parameters during decomposition, such as the switching activity associated with the switching PMTBDD (SWPMTBDD). In addition, we highlight the key importance of circuit optimization methods via non-disjoint decomposition when minimizing power consumption. An algorithm is proposed to assess the effectiveness of decomposition, considering several parameters, such as the number of non-disjoint decompositions as well as that of shared and non-shared bound functions or the switching activity. The results of experiments that demonstrate the effectiveness of the proposed methods are also included.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"109 1","pages":"267 - 284"},"PeriodicalIF":1.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technology Mapping of Multi–Output Functions Leading to the Reduction of Dynamic Power Consumption in FPGAS\",\"authors\":\"A. Opara, M. Kubica\",\"doi\":\"10.34768/amcs-2023-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article presents a synthesis strategy aimed at minimizing the dynamic power consumption of combinational circuits mapped in LUT blocks of FPGAs. The implemented circuits represent the mapping of multi-output functions. Properly selected multi-output functions are described using a new form of the binary decision diagram (BDD), which is an extension of pseudomulti-terminal BDDs (PMTBDDs) in the literature. The essence of limiting power consumption is to include additional parameters during decomposition, such as the switching activity associated with the switching PMTBDD (SWPMTBDD). In addition, we highlight the key importance of circuit optimization methods via non-disjoint decomposition when minimizing power consumption. An algorithm is proposed to assess the effectiveness of decomposition, considering several parameters, such as the number of non-disjoint decompositions as well as that of shared and non-shared bound functions or the switching activity. The results of experiments that demonstrate the effectiveness of the proposed methods are also included.\",\"PeriodicalId\":50339,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"109 1\",\"pages\":\"267 - 284\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2023-0020\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2023-0020","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文提出了一种综合策略,旨在最大限度地降低映射在fpga的LUT模块中的组合电路的动态功耗。所实现的电路表示多输出功能的映射。本文采用一种新形式的二元决策图(BDD)来描述适当选择的多输出函数,该二元决策图是文献中伪多终端决策图(pmtbdd)的扩展。限制功耗的本质是在分解过程中包含额外的参数,例如与开关PMTBDD (SWPMTBDD)相关的开关活动。此外,我们强调了电路优化方法在最小化功耗时的关键重要性。提出了一种综合考虑非不相交分解个数、共享和非共享界函数个数、切换活动性等参数的分解有效性评价算法。实验结果证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Technology Mapping of Multi–Output Functions Leading to the Reduction of Dynamic Power Consumption in FPGAS
Abstract This article presents a synthesis strategy aimed at minimizing the dynamic power consumption of combinational circuits mapped in LUT blocks of FPGAs. The implemented circuits represent the mapping of multi-output functions. Properly selected multi-output functions are described using a new form of the binary decision diagram (BDD), which is an extension of pseudomulti-terminal BDDs (PMTBDDs) in the literature. The essence of limiting power consumption is to include additional parameters during decomposition, such as the switching activity associated with the switching PMTBDD (SWPMTBDD). In addition, we highlight the key importance of circuit optimization methods via non-disjoint decomposition when minimizing power consumption. An algorithm is proposed to assess the effectiveness of decomposition, considering several parameters, such as the number of non-disjoint decompositions as well as that of shared and non-shared bound functions or the switching activity. The results of experiments that demonstrate the effectiveness of the proposed methods are also included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
21.10%
发文量
0
审稿时长
4.2 months
期刊介绍: The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences. The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas: -modern control theory and practice- artificial intelligence methods and their applications- applied mathematics and mathematical optimisation techniques- mathematical methods in engineering, computer science, and biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信