在融合观测、有偏和随机数据源的同时逼近反事实界限

Marco Zaffalon, Alessandro Antonucci, Rafael Cabañas, David Huber
{"title":"在融合观测、有偏和随机数据源的同时逼近反事实界限","authors":"Marco Zaffalon, Alessandro Antonucci, Rafael Cabañas, David Huber","doi":"10.48550/arXiv.2307.16577","DOIUrl":null,"url":null,"abstract":"We address the problem of integrating data from multiple, possibly biased, observational and interventional studies, to eventually compute counterfactuals in structural causal models. We start from the case of a single observational dataset affected by a selection bias. We show that the likelihood of the available data has no local maxima. This enables us to use the causal expectation-maximisation scheme to approximate the bounds for partially identifiable counterfactual queries, which are the focus of this paper. We then show how the same approach can address the general case of multiple datasets, no matter whether interventional or observational, biased or unbiased, by remapping it into the former one via graphical transformations. Systematic numerical experiments and a case study on palliative care show the effectiveness of our approach, while hinting at the benefits of fusing heterogeneous data sources to get informative outcomes in case of partial identifiability.","PeriodicalId":13685,"journal":{"name":"Int. J. Approx. Reason.","volume":"44 2 1","pages":"109023"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Approximating Counterfactual Bounds while Fusing Observational, Biased and Randomised Data Sources\",\"authors\":\"Marco Zaffalon, Alessandro Antonucci, Rafael Cabañas, David Huber\",\"doi\":\"10.48550/arXiv.2307.16577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of integrating data from multiple, possibly biased, observational and interventional studies, to eventually compute counterfactuals in structural causal models. We start from the case of a single observational dataset affected by a selection bias. We show that the likelihood of the available data has no local maxima. This enables us to use the causal expectation-maximisation scheme to approximate the bounds for partially identifiable counterfactual queries, which are the focus of this paper. We then show how the same approach can address the general case of multiple datasets, no matter whether interventional or observational, biased or unbiased, by remapping it into the former one via graphical transformations. Systematic numerical experiments and a case study on palliative care show the effectiveness of our approach, while hinting at the benefits of fusing heterogeneous data sources to get informative outcomes in case of partial identifiability.\",\"PeriodicalId\":13685,\"journal\":{\"name\":\"Int. J. Approx. Reason.\",\"volume\":\"44 2 1\",\"pages\":\"109023\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Approx. Reason.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2307.16577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Approx. Reason.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.16577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们解决了从多个可能有偏差的观察性和干涉性研究中整合数据的问题,以最终计算结构因果模型中的反事实。我们从受选择偏差影响的单个观测数据集开始。我们证明了可用数据的似然没有局部最大值。这使我们能够使用因果期望最大化方案来近似部分可识别的反事实查询的边界,这是本文的重点。然后,我们展示了相同的方法如何解决多个数据集的一般情况,无论是干预性的还是观察性的,有偏见的还是无偏的,通过图形转换将其重新映射到前一个数据集。系统的数值实验和姑息治疗的案例研究表明了我们的方法的有效性,同时暗示了在部分可识别的情况下融合异构数据源以获得信息结果的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating Counterfactual Bounds while Fusing Observational, Biased and Randomised Data Sources
We address the problem of integrating data from multiple, possibly biased, observational and interventional studies, to eventually compute counterfactuals in structural causal models. We start from the case of a single observational dataset affected by a selection bias. We show that the likelihood of the available data has no local maxima. This enables us to use the causal expectation-maximisation scheme to approximate the bounds for partially identifiable counterfactual queries, which are the focus of this paper. We then show how the same approach can address the general case of multiple datasets, no matter whether interventional or observational, biased or unbiased, by remapping it into the former one via graphical transformations. Systematic numerical experiments and a case study on palliative care show the effectiveness of our approach, while hinting at the benefits of fusing heterogeneous data sources to get informative outcomes in case of partial identifiability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信