基于时间显式中心差分法的纵向加固墙梁弹塑性动力学建模

Q3 Mathematics
A.P. Yankovskii
{"title":"基于时间显式中心差分法的纵向加固墙梁弹塑性动力学建模","authors":"A.P. Yankovskii","doi":"10.1016/j.jappmathmech.2017.07.005","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>A numerical analytical method for modelling the elastoplastic deformation of longitudinally reinforced wall beams with isotropically strengthened composite component materials, which enables a solution of the corresponding elastoplastic problem to be obtained at discrete instants of time using an explicit scheme, is developed by a time step method involving central finite differences. In the case of linear elastic composite component materials in the reinforced beams, the proposed model reduces to Bolotin's well-known structural model of the mechanics of composites. An initial-boundary-value problem of the dynamic deformation of longitudinally reinforced flexible wall beams is formulated in the von Karman approximation with consideration of their weakened resistance to transverse </span>shearing. Equations and relations corresponding to two versions of Timoshenko's theory are obtained from a few positions. An explicit “cross” scheme for numerical integration of the initial-boundary-value problem posed, which is consistent with the step-by-step scheme used to model the elastoplastic deformation of a composite beam material, is constructed. Calculations of the dynamic and quasistatic </span>bending behaviour of reinforced wall beams during the linear elastic and elastoplastic deformation of the composite component materials are performed. It is found that the classical theory is totally unacceptable for performing such calculations (except for beams of very small relative height) and that the first version of Timoshenko's theory gives adequate results only in the case of linear elastic composite component materials. Use of the second version of Timoshenko's theory is recommended as more accurate for calculations of the elastoplastic deformation of reinforced wall beams.</p></div>","PeriodicalId":49686,"journal":{"name":"Pmm Journal of Applied Mathematics and Mechanics","volume":"81 1","pages":"Pages 36-51"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jappmathmech.2017.07.005","citationCount":"6","resultStr":"{\"title\":\"Modelling of the elastoplastic dynamics of longitudinally reinforced wall beams based on a time-explicit central difference method\",\"authors\":\"A.P. Yankovskii\",\"doi\":\"10.1016/j.jappmathmech.2017.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>A numerical analytical method for modelling the elastoplastic deformation of longitudinally reinforced wall beams with isotropically strengthened composite component materials, which enables a solution of the corresponding elastoplastic problem to be obtained at discrete instants of time using an explicit scheme, is developed by a time step method involving central finite differences. In the case of linear elastic composite component materials in the reinforced beams, the proposed model reduces to Bolotin's well-known structural model of the mechanics of composites. An initial-boundary-value problem of the dynamic deformation of longitudinally reinforced flexible wall beams is formulated in the von Karman approximation with consideration of their weakened resistance to transverse </span>shearing. Equations and relations corresponding to two versions of Timoshenko's theory are obtained from a few positions. An explicit “cross” scheme for numerical integration of the initial-boundary-value problem posed, which is consistent with the step-by-step scheme used to model the elastoplastic deformation of a composite beam material, is constructed. Calculations of the dynamic and quasistatic </span>bending behaviour of reinforced wall beams during the linear elastic and elastoplastic deformation of the composite component materials are performed. It is found that the classical theory is totally unacceptable for performing such calculations (except for beams of very small relative height) and that the first version of Timoshenko's theory gives adequate results only in the case of linear elastic composite component materials. Use of the second version of Timoshenko's theory is recommended as more accurate for calculations of the elastoplastic deformation of reinforced wall beams.</p></div>\",\"PeriodicalId\":49686,\"journal\":{\"name\":\"Pmm Journal of Applied Mathematics and Mechanics\",\"volume\":\"81 1\",\"pages\":\"Pages 36-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jappmathmech.2017.07.005\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pmm Journal of Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021892817300412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pmm Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021892817300412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

摘要

采用涉及中心有限差分的时间步进法,提出了一种模拟各向同性复合构件材料纵向加固墙梁弹塑性变形的数值解析方法,该方法可以在离散时刻用显式格式求解相应的弹塑性问题。对于增强梁中的线弹性复合构件材料,所提出的模型可简化为Bolotin著名的复合材料力学结构模型。在考虑横向剪力减弱的情况下,用von Karman近似给出了纵向加筋柔性墙梁动力变形的初边值问题。从几个位置得到了与Timoshenko理论的两个版本相对应的方程和关系。建立了一种明确的“交叉”格式,用于数值积分所提出的初边值问题,该格式与用于模拟复合梁材料弹塑性变形的分步格式一致。计算了复合构件材料线弹性和弹塑性变形过程中加筋墙梁的动态和准静态弯曲行为。人们发现,经典理论对于进行这种计算是完全不能接受的(相对高度非常小的梁除外),而Timoshenko理论的第一版只有在线弹性复合构件材料的情况下才能给出充分的结果。建议使用Timoshenko理论的第二个版本,因为它更准确地计算加固墙梁的弹塑性变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling of the elastoplastic dynamics of longitudinally reinforced wall beams based on a time-explicit central difference method

A numerical analytical method for modelling the elastoplastic deformation of longitudinally reinforced wall beams with isotropically strengthened composite component materials, which enables a solution of the corresponding elastoplastic problem to be obtained at discrete instants of time using an explicit scheme, is developed by a time step method involving central finite differences. In the case of linear elastic composite component materials in the reinforced beams, the proposed model reduces to Bolotin's well-known structural model of the mechanics of composites. An initial-boundary-value problem of the dynamic deformation of longitudinally reinforced flexible wall beams is formulated in the von Karman approximation with consideration of their weakened resistance to transverse shearing. Equations and relations corresponding to two versions of Timoshenko's theory are obtained from a few positions. An explicit “cross” scheme for numerical integration of the initial-boundary-value problem posed, which is consistent with the step-by-step scheme used to model the elastoplastic deformation of a composite beam material, is constructed. Calculations of the dynamic and quasistatic bending behaviour of reinforced wall beams during the linear elastic and elastoplastic deformation of the composite component materials are performed. It is found that the classical theory is totally unacceptable for performing such calculations (except for beams of very small relative height) and that the first version of Timoshenko's theory gives adequate results only in the case of linear elastic composite component materials. Use of the second version of Timoshenko's theory is recommended as more accurate for calculations of the elastoplastic deformation of reinforced wall beams.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: This journal is a cover to cover translation of the Russian journal Prikladnaya Matematika i Mekhanika, published by the Russian Academy of Sciences and reflecting all the major achievements of the Russian School of Mechanics.The journal is concerned with high-level mathematical investigations of modern physical and mechanical problems and reports current progress in this field. Special emphasis is placed on aeronautics and space science and such subjects as continuum mechanics, theory of elasticity, and mathematics of space flight guidance and control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信