J. González-Rodríguez, M. Casales, M. Amaya, L. Martínez
{"title":"热处理对沉积Fe-40Al金属间化合物腐蚀行为的影响","authors":"J. González-Rodríguez, M. Casales, M. Amaya, L. Martínez","doi":"10.1179/000705901101501514","DOIUrl":null,"url":null,"abstract":"Abstract A study using electrochemical techniques of the susceptibility to corrosion in 0·1M NaCl solution (pH 3) of atomised and deposited Fe–40Al (at.-%) intermetallic material at room temperature is reported. Specimens were heat treated at temperatures of 600 and 900°C for 24 and 72 h. Potentiodynamic polarisation, linear polarisation resistance, potential–time, and electrochemical current noise data were collected. The untreated material displayed higher corrosion resistance than the heat treated material. In the treated material, the corrosion resistance increased with both the time and temperature of heat treatment. Also, untreated material was more susceptible to pitting corrosion than heat treated material. As the temperature or the time of heat treatment was increased, the material became more resistant to pitting. This improvement in resistance to pitting was related to a decrease in surface defects, such as pores and cracks, and an increase in grain size. Thus, heat treatment lowered the number of active sites and helped the material to establish a more protective film.","PeriodicalId":9349,"journal":{"name":"British Corrosion Journal","volume":"9 1","pages":"65 - 69"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effect of heat treatment on corrosion behaviour of deposited Fe–40Al intermetallics\",\"authors\":\"J. González-Rodríguez, M. Casales, M. Amaya, L. Martínez\",\"doi\":\"10.1179/000705901101501514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A study using electrochemical techniques of the susceptibility to corrosion in 0·1M NaCl solution (pH 3) of atomised and deposited Fe–40Al (at.-%) intermetallic material at room temperature is reported. Specimens were heat treated at temperatures of 600 and 900°C for 24 and 72 h. Potentiodynamic polarisation, linear polarisation resistance, potential–time, and electrochemical current noise data were collected. The untreated material displayed higher corrosion resistance than the heat treated material. In the treated material, the corrosion resistance increased with both the time and temperature of heat treatment. Also, untreated material was more susceptible to pitting corrosion than heat treated material. As the temperature or the time of heat treatment was increased, the material became more resistant to pitting. This improvement in resistance to pitting was related to a decrease in surface defects, such as pores and cracks, and an increase in grain size. Thus, heat treatment lowered the number of active sites and helped the material to establish a more protective film.\",\"PeriodicalId\":9349,\"journal\":{\"name\":\"British Corrosion Journal\",\"volume\":\"9 1\",\"pages\":\"65 - 69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Corrosion Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1179/000705901101501514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Corrosion Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/000705901101501514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of heat treatment on corrosion behaviour of deposited Fe–40Al intermetallics
Abstract A study using electrochemical techniques of the susceptibility to corrosion in 0·1M NaCl solution (pH 3) of atomised and deposited Fe–40Al (at.-%) intermetallic material at room temperature is reported. Specimens were heat treated at temperatures of 600 and 900°C for 24 and 72 h. Potentiodynamic polarisation, linear polarisation resistance, potential–time, and electrochemical current noise data were collected. The untreated material displayed higher corrosion resistance than the heat treated material. In the treated material, the corrosion resistance increased with both the time and temperature of heat treatment. Also, untreated material was more susceptible to pitting corrosion than heat treated material. As the temperature or the time of heat treatment was increased, the material became more resistant to pitting. This improvement in resistance to pitting was related to a decrease in surface defects, such as pores and cracks, and an increase in grain size. Thus, heat treatment lowered the number of active sites and helped the material to establish a more protective film.