B. Barber, Yi-Tsung Lee, Yu-Jane Liu, Terrance Odean, Kecheng Zhang
{"title":"学习,快还是慢","authors":"B. Barber, Yi-Tsung Lee, Yu-Jane Liu, Terrance Odean, Kecheng Zhang","doi":"10.1093/rapstu/raz006","DOIUrl":null,"url":null,"abstract":"\n Rational models claim “trading to learn” explains widespread excessive speculative trading and challenge behavioral explanations of excessive trading. We argue rational learning models do not explain speculative trading by studying day traders in Taiwan. Consistent with previous studies of learning, unprofitable day traders are more likely than profitable traders to quit. Consistent with models of overconfidence and biased learning (but not with rational learning), the aggregate performance of day traders is negative; 74% of day trading volume is generated by traders with a history of losses; and 97% of day traders are likely to lose money in future day trading.\n Received: March 4, 2019; Editorial decision: May 16, 2019 by Editor: Jeffrey Pontiff. Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.","PeriodicalId":21144,"journal":{"name":"Review of Asset Pricing Studies","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2019-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Learning, Fast or Slow\",\"authors\":\"B. Barber, Yi-Tsung Lee, Yu-Jane Liu, Terrance Odean, Kecheng Zhang\",\"doi\":\"10.1093/rapstu/raz006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Rational models claim “trading to learn” explains widespread excessive speculative trading and challenge behavioral explanations of excessive trading. We argue rational learning models do not explain speculative trading by studying day traders in Taiwan. Consistent with previous studies of learning, unprofitable day traders are more likely than profitable traders to quit. Consistent with models of overconfidence and biased learning (but not with rational learning), the aggregate performance of day traders is negative; 74% of day trading volume is generated by traders with a history of losses; and 97% of day traders are likely to lose money in future day trading.\\n Received: March 4, 2019; Editorial decision: May 16, 2019 by Editor: Jeffrey Pontiff. Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.\",\"PeriodicalId\":21144,\"journal\":{\"name\":\"Review of Asset Pricing Studies\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2019-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Asset Pricing Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/rapstu/raz006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Asset Pricing Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/rapstu/raz006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Rational models claim “trading to learn” explains widespread excessive speculative trading and challenge behavioral explanations of excessive trading. We argue rational learning models do not explain speculative trading by studying day traders in Taiwan. Consistent with previous studies of learning, unprofitable day traders are more likely than profitable traders to quit. Consistent with models of overconfidence and biased learning (but not with rational learning), the aggregate performance of day traders is negative; 74% of day trading volume is generated by traders with a history of losses; and 97% of day traders are likely to lose money in future day trading.
Received: March 4, 2019; Editorial decision: May 16, 2019 by Editor: Jeffrey Pontiff. Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.
期刊介绍:
The Review of Asset Pricing Studies (RAPS) is a journal that aims to publish high-quality research in asset pricing. It evaluates papers based on their original contribution to the understanding of asset pricing. The topics covered in RAPS include theoretical and empirical models of asset prices and returns, empirical methodology, macro-finance, financial institutions and asset prices, information and liquidity in asset markets, behavioral investment studies, asset market structure and microstructure, risk analysis, hedge funds, mutual funds, alternative investments, and other related topics.
Manuscripts submitted to RAPS must be exclusive to the journal and should not have been previously published. Starting in 2020, RAPS will publish three issues per year, owing to an increasing number of high-quality submissions. The journal is indexed in EconLit, Emerging Sources Citation IndexTM, RePEc (Research Papers in Economics), and Scopus.