植物繁殖算法及NSGA-II在多目标线性规划中的应用

IF 2 Q1 MATHEMATICS
Paschal Bisong Nyiam, A. Salhi
{"title":"植物繁殖算法及NSGA-II在多目标线性规划中的应用","authors":"Paschal Bisong Nyiam, A. Salhi","doi":"10.11648/j.mcs.20230801.13","DOIUrl":null,"url":null,"abstract":": Multiple Objective Linear Programming (MOLP) problems are usually solved by exact methods. However, nature-inspired population based stochastic algorithms such as the plant propagation algorithm are becoming more and more prominent. This paper applies the multiple objective plant propagation algorithm (MOPPA) and nondominated sorting genetic algorithm II (NSGA-II) for the first time to MOLP and compares their outcomes with those of prominent exact methods. Computational results from a collection of 51 existing MOLP instances suggests that MOPPA compares favourably with four of the most prominent exact methods namely extended multiple objective simplex algorithm (EMSA), affine scaling interior MOLP algorithm (ASIMOLP), Benson’s outer-approximation algorithm (BOA) and parametric simplex algorithm (PSA)","PeriodicalId":45497,"journal":{"name":"Journal of Mathematics and Computer Science-JMCS","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of the Plant Propagation Algorithm and NSGA-II to Multiple Objective Linear Programming\",\"authors\":\"Paschal Bisong Nyiam, A. Salhi\",\"doi\":\"10.11648/j.mcs.20230801.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Multiple Objective Linear Programming (MOLP) problems are usually solved by exact methods. However, nature-inspired population based stochastic algorithms such as the plant propagation algorithm are becoming more and more prominent. This paper applies the multiple objective plant propagation algorithm (MOPPA) and nondominated sorting genetic algorithm II (NSGA-II) for the first time to MOLP and compares their outcomes with those of prominent exact methods. Computational results from a collection of 51 existing MOLP instances suggests that MOPPA compares favourably with four of the most prominent exact methods namely extended multiple objective simplex algorithm (EMSA), affine scaling interior MOLP algorithm (ASIMOLP), Benson’s outer-approximation algorithm (BOA) and parametric simplex algorithm (PSA)\",\"PeriodicalId\":45497,\"journal\":{\"name\":\"Journal of Mathematics and Computer Science-JMCS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Computer Science-JMCS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.mcs.20230801.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Computer Science-JMCS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.mcs.20230801.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

多目标线性规划(MOLP)问题通常用精确的方法求解。然而,受自然启发的基于种群的随机算法,如植物繁殖算法,正变得越来越突出。本文首次将多目标植物繁殖算法(MOPPA)和非支配排序遗传算法II (NSGA-II)应用于MOLP,并将其结果与著名的精确方法进行了比较。现有51个MOLP实例的计算结果表明,MOPPA优于四种最突出的精确方法,即扩展多目标单纯形算法(EMSA)、仿射尺度内部MOLP算法(ASIMOLP)、Benson的外部近似算法(BOA)和参数单纯形算法(PSA)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of the Plant Propagation Algorithm and NSGA-II to Multiple Objective Linear Programming
: Multiple Objective Linear Programming (MOLP) problems are usually solved by exact methods. However, nature-inspired population based stochastic algorithms such as the plant propagation algorithm are becoming more and more prominent. This paper applies the multiple objective plant propagation algorithm (MOPPA) and nondominated sorting genetic algorithm II (NSGA-II) for the first time to MOLP and compares their outcomes with those of prominent exact methods. Computational results from a collection of 51 existing MOLP instances suggests that MOPPA compares favourably with four of the most prominent exact methods namely extended multiple objective simplex algorithm (EMSA), affine scaling interior MOLP algorithm (ASIMOLP), Benson’s outer-approximation algorithm (BOA) and parametric simplex algorithm (PSA)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
4.00%
发文量
77
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信