{"title":"植物繁殖算法及NSGA-II在多目标线性规划中的应用","authors":"Paschal Bisong Nyiam, A. Salhi","doi":"10.11648/j.mcs.20230801.13","DOIUrl":null,"url":null,"abstract":": Multiple Objective Linear Programming (MOLP) problems are usually solved by exact methods. However, nature-inspired population based stochastic algorithms such as the plant propagation algorithm are becoming more and more prominent. This paper applies the multiple objective plant propagation algorithm (MOPPA) and nondominated sorting genetic algorithm II (NSGA-II) for the first time to MOLP and compares their outcomes with those of prominent exact methods. Computational results from a collection of 51 existing MOLP instances suggests that MOPPA compares favourably with four of the most prominent exact methods namely extended multiple objective simplex algorithm (EMSA), affine scaling interior MOLP algorithm (ASIMOLP), Benson’s outer-approximation algorithm (BOA) and parametric simplex algorithm (PSA)","PeriodicalId":45497,"journal":{"name":"Journal of Mathematics and Computer Science-JMCS","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of the Plant Propagation Algorithm and NSGA-II to Multiple Objective Linear Programming\",\"authors\":\"Paschal Bisong Nyiam, A. Salhi\",\"doi\":\"10.11648/j.mcs.20230801.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Multiple Objective Linear Programming (MOLP) problems are usually solved by exact methods. However, nature-inspired population based stochastic algorithms such as the plant propagation algorithm are becoming more and more prominent. This paper applies the multiple objective plant propagation algorithm (MOPPA) and nondominated sorting genetic algorithm II (NSGA-II) for the first time to MOLP and compares their outcomes with those of prominent exact methods. Computational results from a collection of 51 existing MOLP instances suggests that MOPPA compares favourably with four of the most prominent exact methods namely extended multiple objective simplex algorithm (EMSA), affine scaling interior MOLP algorithm (ASIMOLP), Benson’s outer-approximation algorithm (BOA) and parametric simplex algorithm (PSA)\",\"PeriodicalId\":45497,\"journal\":{\"name\":\"Journal of Mathematics and Computer Science-JMCS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Computer Science-JMCS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.mcs.20230801.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Computer Science-JMCS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.mcs.20230801.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Application of the Plant Propagation Algorithm and NSGA-II to Multiple Objective Linear Programming
: Multiple Objective Linear Programming (MOLP) problems are usually solved by exact methods. However, nature-inspired population based stochastic algorithms such as the plant propagation algorithm are becoming more and more prominent. This paper applies the multiple objective plant propagation algorithm (MOPPA) and nondominated sorting genetic algorithm II (NSGA-II) for the first time to MOLP and compares their outcomes with those of prominent exact methods. Computational results from a collection of 51 existing MOLP instances suggests that MOPPA compares favourably with four of the most prominent exact methods namely extended multiple objective simplex algorithm (EMSA), affine scaling interior MOLP algorithm (ASIMOLP), Benson’s outer-approximation algorithm (BOA) and parametric simplex algorithm (PSA)