均方和均四阶微积分下随机柯西对流扩散模型的研究

Sohalya Ma, Yassena Mt, Elbaza Im
{"title":"均方和均四阶微积分下随机柯西对流扩散模型的研究","authors":"Sohalya Ma, Yassena Mt, Elbaza Im","doi":"10.4172/2168-9679.1000343","DOIUrl":null,"url":null,"abstract":"The random partial differential equations have a wide range of physical, chemical, and biological applications. The finite difference method offers an attractively simple approximations for these equations. In this paper, the finite difference technique is performed in order to find an approximation solutions for the linear one dimensional convection-diffusion equation with random variable coefficient. We study the consistency and stability of the finite difference scheme under mean square sense. A statistical measure such as mean for the numerical approximation, and the exact solution based on different statistical distributions is computed.","PeriodicalId":15007,"journal":{"name":"Journal of Applied and Computational Mathematics","volume":"117 4 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Studying of Random Cauchy Convection Diffusion Models under Mean Square and Mean Fourth Calculus\",\"authors\":\"Sohalya Ma, Yassena Mt, Elbaza Im\",\"doi\":\"10.4172/2168-9679.1000343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The random partial differential equations have a wide range of physical, chemical, and biological applications. The finite difference method offers an attractively simple approximations for these equations. In this paper, the finite difference technique is performed in order to find an approximation solutions for the linear one dimensional convection-diffusion equation with random variable coefficient. We study the consistency and stability of the finite difference scheme under mean square sense. A statistical measure such as mean for the numerical approximation, and the exact solution based on different statistical distributions is computed.\",\"PeriodicalId\":15007,\"journal\":{\"name\":\"Journal of Applied and Computational Mathematics\",\"volume\":\"117 4 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9679.1000343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9679.1000343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随机偏微分方程具有广泛的物理、化学和生物应用。有限差分法为这些方程提供了一种诱人的简单近似。本文用有限差分法求具有随机变系数的一维线性对流扩散方程的近似解。研究了均方意义下有限差分格式的相合性和稳定性。一个统计度量,如平均值,用于数值逼近,并计算基于不同统计分布的精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Studying of Random Cauchy Convection Diffusion Models under Mean Square and Mean Fourth Calculus
The random partial differential equations have a wide range of physical, chemical, and biological applications. The finite difference method offers an attractively simple approximations for these equations. In this paper, the finite difference technique is performed in order to find an approximation solutions for the linear one dimensional convection-diffusion equation with random variable coefficient. We study the consistency and stability of the finite difference scheme under mean square sense. A statistical measure such as mean for the numerical approximation, and the exact solution based on different statistical distributions is computed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信