关于复杂反射群随机漫步混合时间的Aldous定理的一个模拟

Q4 Medicine
H. A. Zadarazhniuk
{"title":"关于复杂反射群随机漫步混合时间的Aldous定理的一个模拟","authors":"H. A. Zadarazhniuk","doi":"10.29235/1561-2430-2023-59-1-51-61","DOIUrl":null,"url":null,"abstract":"The subject of this paper is the mixing time of random walks on minimal Cayley graphs of complex reflection groups G(m,1,n). The key role in estimating it is played by the coupling of distributions, which has been used before for the same task on symmetric groups. The difficulty with its adaptation for the current case is that there are now two components in a walk, which are to be coupled, and they influence each other’s behaviour. To solve this problem, random walks are split into several blocks for each of which the time needed for their states to match is estimated separately. The result is upper and lower bounds on mixing times of random walks on complex reflection groups, analogous to those obtained by Aldous for a symmetric group.","PeriodicalId":20584,"journal":{"name":"Proceedings of the National Academy of Sciences of Belarus, Medical series","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analogue of Aldous’s theorem on mixing times of a random walk for complex reflection groups\",\"authors\":\"H. A. Zadarazhniuk\",\"doi\":\"10.29235/1561-2430-2023-59-1-51-61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The subject of this paper is the mixing time of random walks on minimal Cayley graphs of complex reflection groups G(m,1,n). The key role in estimating it is played by the coupling of distributions, which has been used before for the same task on symmetric groups. The difficulty with its adaptation for the current case is that there are now two components in a walk, which are to be coupled, and they influence each other’s behaviour. To solve this problem, random walks are split into several blocks for each of which the time needed for their states to match is estimated separately. The result is upper and lower bounds on mixing times of random walks on complex reflection groups, analogous to those obtained by Aldous for a symmetric group.\",\"PeriodicalId\":20584,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of Belarus, Medical series\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of Belarus, Medical series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-2430-2023-59-1-51-61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of Belarus, Medical series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-2430-2023-59-1-51-61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

本文的主题是复反射群G(m,1,n)的极小Cayley图上随机游动的混合时间。估计它的关键作用是由分布的耦合起作用,以前在对称群上用于相同的任务。对当前案例进行调整的困难在于,现在散步中有两个组成部分,它们是耦合的,并且它们相互影响对方的行为。为了解决这个问题,随机漫步被分成几个块,每个块的状态匹配所需的时间被单独估计。得到了复反射群上随机游动混合次数的上界和下界,类似于Aldous对对称群的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analogue of Aldous’s theorem on mixing times of a random walk for complex reflection groups
The subject of this paper is the mixing time of random walks on minimal Cayley graphs of complex reflection groups G(m,1,n). The key role in estimating it is played by the coupling of distributions, which has been used before for the same task on symmetric groups. The difficulty with its adaptation for the current case is that there are now two components in a walk, which are to be coupled, and they influence each other’s behaviour. To solve this problem, random walks are split into several blocks for each of which the time needed for their states to match is estimated separately. The result is upper and lower bounds on mixing times of random walks on complex reflection groups, analogous to those obtained by Aldous for a symmetric group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
35
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信