关于段锥模型在马赫M = 2.3时的动力阻尼系数。

IF 0.4 Q4 MATHEMATICS
N. Adamov, N. A. Mishchenko, E. A. Chasovnikov
{"title":"关于段锥模型在马赫M = 2.3时的动力阻尼系数。","authors":"N. Adamov, N. A. Mishchenko, E. A. Chasovnikov","doi":"10.25205/2541-9447-2022-17-1-34-46","DOIUrl":null,"url":null,"abstract":"In order to describe the nonlinear behavior of oscillation amplitude of the segmental-conical model on a transversive rod setup in a wind tunnel at Mach М = 2, a polynomial function of damping derivatives was used. Polynom of the 4th degree as a function of viscous damping allowed to describe two limit cycles observed in experiments. Coefficients of the polynom were determined and showed sufficient agreement with a direct numerical solution of the proposed dynamic equation.","PeriodicalId":43965,"journal":{"name":"Journal of Siberian Federal University-Mathematics & Physics","volume":"39 2 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"About the Dynamic Damping Coefficients of a Segmental-Cone Model at Mach M = 2.3.\",\"authors\":\"N. Adamov, N. A. Mishchenko, E. A. Chasovnikov\",\"doi\":\"10.25205/2541-9447-2022-17-1-34-46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to describe the nonlinear behavior of oscillation amplitude of the segmental-conical model on a transversive rod setup in a wind tunnel at Mach М = 2, a polynomial function of damping derivatives was used. Polynom of the 4th degree as a function of viscous damping allowed to describe two limit cycles observed in experiments. Coefficients of the polynom were determined and showed sufficient agreement with a direct numerical solution of the proposed dynamic equation.\",\"PeriodicalId\":43965,\"journal\":{\"name\":\"Journal of Siberian Federal University-Mathematics & Physics\",\"volume\":\"39 2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University-Mathematics & Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25205/2541-9447-2022-17-1-34-46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University-Mathematics & Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25205/2541-9447-2022-17-1-34-46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

为了描述在М = 2马赫数条件下横杆上的截面锥模型振动幅值的非线性行为,采用了阻尼导数的多项式函数。四次多项式作为粘滞阻尼的函数,允许描述实验中观察到的两个极限环。确定了多项式的系数,并与所提出的动力学方程的直接数值解显示出充分的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
About the Dynamic Damping Coefficients of a Segmental-Cone Model at Mach M = 2.3.
In order to describe the nonlinear behavior of oscillation amplitude of the segmental-conical model on a transversive rod setup in a wind tunnel at Mach М = 2, a polynomial function of damping derivatives was used. Polynom of the 4th degree as a function of viscous damping allowed to describe two limit cycles observed in experiments. Coefficients of the polynom were determined and showed sufficient agreement with a direct numerical solution of the proposed dynamic equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
26
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信