用双模拟检验NFA等价直到同余

F. Bonchi, D. Pous
{"title":"用双模拟检验NFA等价直到同余","authors":"F. Bonchi, D. Pous","doi":"10.1145/2429069.2429124","DOIUrl":null,"url":null,"abstract":"We introduce bisimulation up to congruence as a technique for proving language equivalence of non-deterministic finite automata. Exploiting this technique, we devise an optimisation of the classical algorithm by Hopcroft and Karp. We compare our approach to the recently introduced antichain algorithms, by analysing and relating the two underlying coinductive proof methods. We give concrete examples where we exponentially improve over antichains; experimental results moreover show non negligible improvements.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":"123 1","pages":"457-468"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"161","resultStr":"{\"title\":\"Checking NFA equivalence with bisimulations up to congruence\",\"authors\":\"F. Bonchi, D. Pous\",\"doi\":\"10.1145/2429069.2429124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce bisimulation up to congruence as a technique for proving language equivalence of non-deterministic finite automata. Exploiting this technique, we devise an optimisation of the classical algorithm by Hopcroft and Karp. We compare our approach to the recently introduced antichain algorithms, by analysing and relating the two underlying coinductive proof methods. We give concrete examples where we exponentially improve over antichains; experimental results moreover show non negligible improvements.\",\"PeriodicalId\":20683,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"volume\":\"123 1\",\"pages\":\"457-468\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"161\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2429069.2429124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2429069.2429124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 161

摘要

本文介绍了一种证明非确定性有限自动机语言等价性的方法——双模拟到同余。利用这种技术,我们设计了Hopcroft和Karp的经典算法的优化。我们通过分析和关联两种潜在的共归纳证明方法,将我们的方法与最近引入的反链算法进行比较。我们给出了在反链上幂指数改进的具体例子;实验结果也显示出不可忽视的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Checking NFA equivalence with bisimulations up to congruence
We introduce bisimulation up to congruence as a technique for proving language equivalence of non-deterministic finite automata. Exploiting this technique, we devise an optimisation of the classical algorithm by Hopcroft and Karp. We compare our approach to the recently introduced antichain algorithms, by analysing and relating the two underlying coinductive proof methods. We give concrete examples where we exponentially improve over antichains; experimental results moreover show non negligible improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信