量子仿射代数的PBW理论

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
M. Kashiwara, Myungho Kim, Se-jin Oh, E. Park
{"title":"量子仿射代数的PBW理论","authors":"M. Kashiwara, Myungho Kim, Se-jin Oh, E. Park","doi":"10.4171/jems/1323","DOIUrl":null,"url":null,"abstract":"Let $U_q'(\\mathfrak{g})$ be a quantum affine algebra of arbitrary type and let $\\mathcal{C}_{\\mathfrak{g}}$ be Hernandez-Leclerc's category. We can associate the quantum affine Schur-Weyl duality functor $F_D$ to a duality datum $D$ in $\\mathcal{C}_{\\mathfrak{g}}$. We introduce the notion of a strong (complete) duality datum $D$ and prove that, when $D$ is strong, the induced duality functor $F_D$ sends simple modules to simple modules and preserves the invariants $\\Lambda$ and $\\Lambda^\\infty$ introduced by the authors. We next define the reflections $\\mathcal{S}_k$ and $\\mathcal{S}^{-1}_k$ acting on strong duality data $D$. We prove that if $D$ is a strong (resp.\\ complete) duality datum, then $\\mathcal{S}_k(D)$ and $\\mathcal{S}_k^{-1}(D)$ are also strong (resp.\\ complete ) duality data. We finally introduce the notion of affine cuspidal modules in $\\mathcal{C}_{\\mathfrak{g}}$ by using the duality functor $F_D$, and develop the cuspidal module theory for quantum affine algebras similarly to the quiver Hecke algebra case.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"PBW theory for quantum affine algebras\",\"authors\":\"M. Kashiwara, Myungho Kim, Se-jin Oh, E. Park\",\"doi\":\"10.4171/jems/1323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $U_q'(\\\\mathfrak{g})$ be a quantum affine algebra of arbitrary type and let $\\\\mathcal{C}_{\\\\mathfrak{g}}$ be Hernandez-Leclerc's category. We can associate the quantum affine Schur-Weyl duality functor $F_D$ to a duality datum $D$ in $\\\\mathcal{C}_{\\\\mathfrak{g}}$. We introduce the notion of a strong (complete) duality datum $D$ and prove that, when $D$ is strong, the induced duality functor $F_D$ sends simple modules to simple modules and preserves the invariants $\\\\Lambda$ and $\\\\Lambda^\\\\infty$ introduced by the authors. We next define the reflections $\\\\mathcal{S}_k$ and $\\\\mathcal{S}^{-1}_k$ acting on strong duality data $D$. We prove that if $D$ is a strong (resp.\\\\ complete) duality datum, then $\\\\mathcal{S}_k(D)$ and $\\\\mathcal{S}_k^{-1}(D)$ are also strong (resp.\\\\ complete ) duality data. We finally introduce the notion of affine cuspidal modules in $\\\\mathcal{C}_{\\\\mathfrak{g}}$ by using the duality functor $F_D$, and develop the cuspidal module theory for quantum affine algebras similarly to the quiver Hecke algebra case.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jems/1323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jems/1323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 7

摘要

设$U_q'(\mathfrak{g})$为任意类型的量子仿射代数,设$\mathcal{C}_{\mathfrak{g}}$为Hernandez-Leclerc的范畴。我们可以将量子仿射Schur-Weyl对偶函子$F_D$与$\mathcal{C}_{\mathfrak{g}}$中的对偶基准$D$联系起来。我们引入了强(完全)对偶数据$D$的概念,并证明了当$D$是强时,诱导对偶函子$F_D$将简单模传递给简单模,并保留了作者引入的不变量$\Lambda$和$\Lambda^\infty$。接下来我们定义作用于强对偶数据$D$上的反射$\mathcal{S}_k$和$\mathcal{S}^{-1}_k$。我们证明了$D$是一个强响应。完全)二元性的数据,那么$\mathcal{S}_k(D)$和$\mathcal{S}_k^{-1}(D)$也是强的(参见。完全对偶数据。最后,我们利用对偶函子$F_D$在$\mathcal{C}_{\mathfrak{g}}$中引入了仿射倒模的概念,并发展了类似于颤振Hecke代数的量子仿射代数的倒模理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PBW theory for quantum affine algebras
Let $U_q'(\mathfrak{g})$ be a quantum affine algebra of arbitrary type and let $\mathcal{C}_{\mathfrak{g}}$ be Hernandez-Leclerc's category. We can associate the quantum affine Schur-Weyl duality functor $F_D$ to a duality datum $D$ in $\mathcal{C}_{\mathfrak{g}}$. We introduce the notion of a strong (complete) duality datum $D$ and prove that, when $D$ is strong, the induced duality functor $F_D$ sends simple modules to simple modules and preserves the invariants $\Lambda$ and $\Lambda^\infty$ introduced by the authors. We next define the reflections $\mathcal{S}_k$ and $\mathcal{S}^{-1}_k$ acting on strong duality data $D$. We prove that if $D$ is a strong (resp.\ complete) duality datum, then $\mathcal{S}_k(D)$ and $\mathcal{S}_k^{-1}(D)$ are also strong (resp.\ complete ) duality data. We finally introduce the notion of affine cuspidal modules in $\mathcal{C}_{\mathfrak{g}}$ by using the duality functor $F_D$, and develop the cuspidal module theory for quantum affine algebras similarly to the quiver Hecke algebra case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信