{"title":"基于随机存储器的矩阵运算故障检测算法","authors":"Mengyun Liu, Lixue Xia, Yu Wang, K. Chakrabarty","doi":"10.1145/3386360","DOIUrl":null,"url":null,"abstract":"An RRAM-based computing system (RCS) provides an energy-efficient hardware implementation of vector-matrix multiplication for machine-learning hardware. However, it is vulnerable to faults due to the immature RRAM fabrication process. We propose an efficient fault tolerance method for RCS; the proposed method, referred to as extended-ABFT (X-ABFT), is inspired by algorithm-based fault tolerance (ABFT). We utilize row checksums and test-input vectors to extract signatures for fault detection and error correction. We present a solution to alleviate the overflow problem caused by the limited number of voltage levels for the test-input signals. Simulation results show that for a Hopfield classifier with faults in 5% of its RRAM cells, X-ABFT allows us to achieve nearly the same classification accuracy as in the fault-free case.","PeriodicalId":6933,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","volume":"20 1","pages":"1 - 31"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Algorithmic Fault Detection for RRAM-based Matrix Operations\",\"authors\":\"Mengyun Liu, Lixue Xia, Yu Wang, K. Chakrabarty\",\"doi\":\"10.1145/3386360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An RRAM-based computing system (RCS) provides an energy-efficient hardware implementation of vector-matrix multiplication for machine-learning hardware. However, it is vulnerable to faults due to the immature RRAM fabrication process. We propose an efficient fault tolerance method for RCS; the proposed method, referred to as extended-ABFT (X-ABFT), is inspired by algorithm-based fault tolerance (ABFT). We utilize row checksums and test-input vectors to extract signatures for fault detection and error correction. We present a solution to alleviate the overflow problem caused by the limited number of voltage levels for the test-input signals. Simulation results show that for a Hopfield classifier with faults in 5% of its RRAM cells, X-ABFT allows us to achieve nearly the same classification accuracy as in the fault-free case.\",\"PeriodicalId\":6933,\"journal\":{\"name\":\"ACM Transactions on Design Automation of Electronic Systems (TODAES)\",\"volume\":\"20 1\",\"pages\":\"1 - 31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Design Automation of Electronic Systems (TODAES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3386360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Algorithmic Fault Detection for RRAM-based Matrix Operations
An RRAM-based computing system (RCS) provides an energy-efficient hardware implementation of vector-matrix multiplication for machine-learning hardware. However, it is vulnerable to faults due to the immature RRAM fabrication process. We propose an efficient fault tolerance method for RCS; the proposed method, referred to as extended-ABFT (X-ABFT), is inspired by algorithm-based fault tolerance (ABFT). We utilize row checksums and test-input vectors to extract signatures for fault detection and error correction. We present a solution to alleviate the overflow problem caused by the limited number of voltage levels for the test-input signals. Simulation results show that for a Hopfield classifier with faults in 5% of its RRAM cells, X-ABFT allows us to achieve nearly the same classification accuracy as in the fault-free case.