后期编辑要纠正什么?对SMT和NMT错误的细粒度分析

IF 0.8 Q3 LINGUISTICS
Sergi Alvarez-Vidal, A. Oliver, Toni Badia
{"title":"后期编辑要纠正什么?对SMT和NMT错误的细粒度分析","authors":"Sergi Alvarez-Vidal, A. Oliver, Toni Badia","doi":"10.5565/rev/tradumatica.286","DOIUrl":null,"url":null,"abstract":"The recent improvements in neural MT (NMT) have driven a shift from statistical MT (SMT) to NMT. However, to assess the usefulness of MT models for post-editing (PE) and have a detailed insight of the output they produce, we need to analyse the most frequent errors and how they affect the task. We present a pilot study of a fine-grained analysis of MT errors based on post-editors corrections for an English to Spanish medical text translated with SMT and NMT. We use the MQM taxonomy to compare the two MT models and have a categorized classification of the errors produced. Even though results show a great variation among post-editors’ corrections, for this language combination fewer errors are corrected by post-editors in the NMT output. NMT also produces fewer accuracy errors and errors that are less critical.","PeriodicalId":42402,"journal":{"name":"Tradumatica-Traduccio i Tecnologies de la Informacio i la Comunicacio","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"What do post-editors correct? A fine-grained analysis of SMT and NMT errors\",\"authors\":\"Sergi Alvarez-Vidal, A. Oliver, Toni Badia\",\"doi\":\"10.5565/rev/tradumatica.286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent improvements in neural MT (NMT) have driven a shift from statistical MT (SMT) to NMT. However, to assess the usefulness of MT models for post-editing (PE) and have a detailed insight of the output they produce, we need to analyse the most frequent errors and how they affect the task. We present a pilot study of a fine-grained analysis of MT errors based on post-editors corrections for an English to Spanish medical text translated with SMT and NMT. We use the MQM taxonomy to compare the two MT models and have a categorized classification of the errors produced. Even though results show a great variation among post-editors’ corrections, for this language combination fewer errors are corrected by post-editors in the NMT output. NMT also produces fewer accuracy errors and errors that are less critical.\",\"PeriodicalId\":42402,\"journal\":{\"name\":\"Tradumatica-Traduccio i Tecnologies de la Informacio i la Comunicacio\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tradumatica-Traduccio i Tecnologies de la Informacio i la Comunicacio\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5565/rev/tradumatica.286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tradumatica-Traduccio i Tecnologies de la Informacio i la Comunicacio","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5565/rev/tradumatica.286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"LINGUISTICS","Score":null,"Total":0}
引用次数: 2

摘要

近年来神经机器翻译(NMT)的进步推动了统计机器翻译(SMT)向NMT的转变。然而,为了评估机器翻译模型对后期编辑(PE)的有用性,并详细了解它们产生的输出,我们需要分析最常见的错误以及它们如何影响任务。我们提出了一项基于后编辑更正的基于SMT和NMT翻译的英语到西班牙语医学文本的MT错误细粒度分析的试点研究。我们使用MQM分类法来比较两个MT模型,并对产生的错误进行分类。尽管结果显示后编辑的纠正差异很大,但对于这种语言组合,后编辑在NMT输出中纠正的错误较少。NMT还产生更少的精度误差和不太重要的错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What do post-editors correct? A fine-grained analysis of SMT and NMT errors
The recent improvements in neural MT (NMT) have driven a shift from statistical MT (SMT) to NMT. However, to assess the usefulness of MT models for post-editing (PE) and have a detailed insight of the output they produce, we need to analyse the most frequent errors and how they affect the task. We present a pilot study of a fine-grained analysis of MT errors based on post-editors corrections for an English to Spanish medical text translated with SMT and NMT. We use the MQM taxonomy to compare the two MT models and have a categorized classification of the errors produced. Even though results show a great variation among post-editors’ corrections, for this language combination fewer errors are corrected by post-editors in the NMT output. NMT also produces fewer accuracy errors and errors that are less critical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
50.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信