L. Ivanov, O. Р. Bezugla, O. Shcherbak, L. Derymedvid, V. Kravchenko
{"title":"软剂型作为界面","authors":"L. Ivanov, O. Р. Bezugla, O. Shcherbak, L. Derymedvid, V. Kravchenko","doi":"10.24959/nphj.21.57","DOIUrl":null,"url":null,"abstract":"Aim. To analyze data on combined drugs in soft dosage forms as potential drug interfaces.\nMaterials and methods. The bibliosemantic research method was used in the work.\nResults and discussion. By analogy with foreign interfaces of carbon nanotubes with neurons it has been proposed to consider a number of soft dosage forms as interfaces between inanimate organic structures of dosage forms and living cells of the skin tissue or the mucous membrane. A number of soft dosage forms, which can be considered as interfaces between the inanimate organics of dosage forms and living cells of the skin tissue and mucosa, has been studied and analyzed. Interfaces are polymer matrices made of polyethylene glycols, high molecular weight polysaccharides, carbomers, etc. A carbomer can be considered as the basis of plastic, conformationally mobile interfaces between the general dosage form and living cells of the skin and mucosa. It has been shown that the mechanism of increasing biocompatibility with the help of polyethylene glycols is the ability of PEG molecules due to compaction (spiralization) or expansion of the molecules to accept the optimal conformation, giving their hydrophobic or polar groups for the optimal binding, on the one hand, with medicinal substances (drugs), and, on the other hand, with bioobjects. It has been shown that the affinity for PEG-400 phosphatidylcholine liposomes is 6 times greater than that of propylene glycol, and the affinity for PEG-1500 liposomes is 24 times higher than that of propylene glycol. Upon contact with the skin or the mucosa the interface structure may be destroyed as the components of the dosage form have different affinities for membranes of cells of biological surfaces – surface active substances that quickly bind to the lipid bilayer of the membranes of the skin or mucous membranes are the first ones that leave the dosage forms. Then, other auxiliary substances of the interface bind to the cell membranes at different speeds and in different ways.\nConclusions. Therefore, a dosage form as an interface is a dynamic matrix that can rebuild and, as it contacts the membranes of skin cells or mucous membranes, promote absorption of the drug substance according to a specific program.","PeriodicalId":19221,"journal":{"name":"News of Pharmacy","volume":"133 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soft dosage forms as interfaces\",\"authors\":\"L. Ivanov, O. Р. Bezugla, O. Shcherbak, L. Derymedvid, V. Kravchenko\",\"doi\":\"10.24959/nphj.21.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim. To analyze data on combined drugs in soft dosage forms as potential drug interfaces.\\nMaterials and methods. The bibliosemantic research method was used in the work.\\nResults and discussion. By analogy with foreign interfaces of carbon nanotubes with neurons it has been proposed to consider a number of soft dosage forms as interfaces between inanimate organic structures of dosage forms and living cells of the skin tissue or the mucous membrane. A number of soft dosage forms, which can be considered as interfaces between the inanimate organics of dosage forms and living cells of the skin tissue and mucosa, has been studied and analyzed. Interfaces are polymer matrices made of polyethylene glycols, high molecular weight polysaccharides, carbomers, etc. A carbomer can be considered as the basis of plastic, conformationally mobile interfaces between the general dosage form and living cells of the skin and mucosa. It has been shown that the mechanism of increasing biocompatibility with the help of polyethylene glycols is the ability of PEG molecules due to compaction (spiralization) or expansion of the molecules to accept the optimal conformation, giving their hydrophobic or polar groups for the optimal binding, on the one hand, with medicinal substances (drugs), and, on the other hand, with bioobjects. It has been shown that the affinity for PEG-400 phosphatidylcholine liposomes is 6 times greater than that of propylene glycol, and the affinity for PEG-1500 liposomes is 24 times higher than that of propylene glycol. Upon contact with the skin or the mucosa the interface structure may be destroyed as the components of the dosage form have different affinities for membranes of cells of biological surfaces – surface active substances that quickly bind to the lipid bilayer of the membranes of the skin or mucous membranes are the first ones that leave the dosage forms. Then, other auxiliary substances of the interface bind to the cell membranes at different speeds and in different ways.\\nConclusions. Therefore, a dosage form as an interface is a dynamic matrix that can rebuild and, as it contacts the membranes of skin cells or mucous membranes, promote absorption of the drug substance according to a specific program.\",\"PeriodicalId\":19221,\"journal\":{\"name\":\"News of Pharmacy\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"News of Pharmacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24959/nphj.21.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"News of Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24959/nphj.21.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aim. To analyze data on combined drugs in soft dosage forms as potential drug interfaces.
Materials and methods. The bibliosemantic research method was used in the work.
Results and discussion. By analogy with foreign interfaces of carbon nanotubes with neurons it has been proposed to consider a number of soft dosage forms as interfaces between inanimate organic structures of dosage forms and living cells of the skin tissue or the mucous membrane. A number of soft dosage forms, which can be considered as interfaces between the inanimate organics of dosage forms and living cells of the skin tissue and mucosa, has been studied and analyzed. Interfaces are polymer matrices made of polyethylene glycols, high molecular weight polysaccharides, carbomers, etc. A carbomer can be considered as the basis of plastic, conformationally mobile interfaces between the general dosage form and living cells of the skin and mucosa. It has been shown that the mechanism of increasing biocompatibility with the help of polyethylene glycols is the ability of PEG molecules due to compaction (spiralization) or expansion of the molecules to accept the optimal conformation, giving their hydrophobic or polar groups for the optimal binding, on the one hand, with medicinal substances (drugs), and, on the other hand, with bioobjects. It has been shown that the affinity for PEG-400 phosphatidylcholine liposomes is 6 times greater than that of propylene glycol, and the affinity for PEG-1500 liposomes is 24 times higher than that of propylene glycol. Upon contact with the skin or the mucosa the interface structure may be destroyed as the components of the dosage form have different affinities for membranes of cells of biological surfaces – surface active substances that quickly bind to the lipid bilayer of the membranes of the skin or mucous membranes are the first ones that leave the dosage forms. Then, other auxiliary substances of the interface bind to the cell membranes at different speeds and in different ways.
Conclusions. Therefore, a dosage form as an interface is a dynamic matrix that can rebuild and, as it contacts the membranes of skin cells or mucous membranes, promote absorption of the drug substance according to a specific program.