S. Ramasubbareddy, Evakattu Swetha, A. Luhach, T. Srinivas
{"title":"移动云计算中基于多目标遗传算法的资源调度","authors":"S. Ramasubbareddy, Evakattu Swetha, A. Luhach, T. Srinivas","doi":"10.4018/IJCINI.20210701.OA5","DOIUrl":null,"url":null,"abstract":"Mobile cloud computing is an emerging technology in recent years. This technology reduces battery consumption and execution time by executing mobile applications in remote cloud server. The virtual machine (VM) load balancing among cloudlets in MCC improves the performance of application in terms of response time. Genetic algorithm (GA) is popular for providing optimal solution for load balancing problems. GA can perform well in both homogeneous and heterogeneous environments. In this paper, the authors consider multi-objective genetic algorithm for load balancing in MCC (MOGALMCC) environment. In MOGALMCC, they consider distance, bandwidth, memory, and cloudlet server load to find optimal cloudlet before scheduling VM in another cloudlet. The framework MOGALMCC aims to improve response time as well as minimizes VM failure rate. The experiment result shows that proposed model performed well by reducing execution time and task waiting time at server.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"63 1","pages":"58-73"},"PeriodicalIF":0.6000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Multi-Objective Genetic Algorithm-Based Resource Scheduling in Mobile Cloud Computing\",\"authors\":\"S. Ramasubbareddy, Evakattu Swetha, A. Luhach, T. Srinivas\",\"doi\":\"10.4018/IJCINI.20210701.OA5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile cloud computing is an emerging technology in recent years. This technology reduces battery consumption and execution time by executing mobile applications in remote cloud server. The virtual machine (VM) load balancing among cloudlets in MCC improves the performance of application in terms of response time. Genetic algorithm (GA) is popular for providing optimal solution for load balancing problems. GA can perform well in both homogeneous and heterogeneous environments. In this paper, the authors consider multi-objective genetic algorithm for load balancing in MCC (MOGALMCC) environment. In MOGALMCC, they consider distance, bandwidth, memory, and cloudlet server load to find optimal cloudlet before scheduling VM in another cloudlet. The framework MOGALMCC aims to improve response time as well as minimizes VM failure rate. The experiment result shows that proposed model performed well by reducing execution time and task waiting time at server.\",\"PeriodicalId\":43637,\"journal\":{\"name\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"volume\":\"63 1\",\"pages\":\"58-73\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJCINI.20210701.OA5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJCINI.20210701.OA5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Multi-Objective Genetic Algorithm-Based Resource Scheduling in Mobile Cloud Computing
Mobile cloud computing is an emerging technology in recent years. This technology reduces battery consumption and execution time by executing mobile applications in remote cloud server. The virtual machine (VM) load balancing among cloudlets in MCC improves the performance of application in terms of response time. Genetic algorithm (GA) is popular for providing optimal solution for load balancing problems. GA can perform well in both homogeneous and heterogeneous environments. In this paper, the authors consider multi-objective genetic algorithm for load balancing in MCC (MOGALMCC) environment. In MOGALMCC, they consider distance, bandwidth, memory, and cloudlet server load to find optimal cloudlet before scheduling VM in another cloudlet. The framework MOGALMCC aims to improve response time as well as minimizes VM failure rate. The experiment result shows that proposed model performed well by reducing execution time and task waiting time at server.
期刊介绍:
The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.