{"title":"贝叶斯反问题的非局部tv -高斯先验及其在有限CT重建中的应用","authors":"Didi Lv, Qingping Zhou, Jae Kyu Choi, Jinglai Li, Xiaoqun Zhang","doi":"10.3934/ipi.2019066","DOIUrl":null,"url":null,"abstract":"Bayesian inference methods have been widely applied in inverse problems due to the ability of uncertainty characterization of the estimation. The prior distribution of the unknown plays an essential role in the Bayesian inference, and a good prior distribution can significantly improve the inference results. In this paper, we propose a hybrid prior distribution on combining the nonlocal total variation regularization (NLTV) and the Gaussian distribution, namely NLTG prior. The advantage of this hybrid prior is two-fold. The proposed prior models both texture and geometric structures present in images through the NLTV. The Gaussian reference measure also provides a flexibility of incorporating structure information from a reference image. Some theoretical properties are established for the hybrid prior. We apply the proposed prior to limited tomography reconstruction problem that is difficult due to severe data missing. Both maximum a posteriori and conditional mean estimates are computed through two efficient methods and the numerical experiments validate the advantages and feasibility of the proposed NLTG prior.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"133 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Nonlocal TV-Gaussian prior for Bayesian inverse problems with applications to limited CT reconstruction\",\"authors\":\"Didi Lv, Qingping Zhou, Jae Kyu Choi, Jinglai Li, Xiaoqun Zhang\",\"doi\":\"10.3934/ipi.2019066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian inference methods have been widely applied in inverse problems due to the ability of uncertainty characterization of the estimation. The prior distribution of the unknown plays an essential role in the Bayesian inference, and a good prior distribution can significantly improve the inference results. In this paper, we propose a hybrid prior distribution on combining the nonlocal total variation regularization (NLTV) and the Gaussian distribution, namely NLTG prior. The advantage of this hybrid prior is two-fold. The proposed prior models both texture and geometric structures present in images through the NLTV. The Gaussian reference measure also provides a flexibility of incorporating structure information from a reference image. Some theoretical properties are established for the hybrid prior. We apply the proposed prior to limited tomography reconstruction problem that is difficult due to severe data missing. Both maximum a posteriori and conditional mean estimates are computed through two efficient methods and the numerical experiments validate the advantages and feasibility of the proposed NLTG prior.\",\"PeriodicalId\":50274,\"journal\":{\"name\":\"Inverse Problems and Imaging\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems and Imaging\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/ipi.2019066\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2019066","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Nonlocal TV-Gaussian prior for Bayesian inverse problems with applications to limited CT reconstruction
Bayesian inference methods have been widely applied in inverse problems due to the ability of uncertainty characterization of the estimation. The prior distribution of the unknown plays an essential role in the Bayesian inference, and a good prior distribution can significantly improve the inference results. In this paper, we propose a hybrid prior distribution on combining the nonlocal total variation regularization (NLTV) and the Gaussian distribution, namely NLTG prior. The advantage of this hybrid prior is two-fold. The proposed prior models both texture and geometric structures present in images through the NLTV. The Gaussian reference measure also provides a flexibility of incorporating structure information from a reference image. Some theoretical properties are established for the hybrid prior. We apply the proposed prior to limited tomography reconstruction problem that is difficult due to severe data missing. Both maximum a posteriori and conditional mean estimates are computed through two efficient methods and the numerical experiments validate the advantages and feasibility of the proposed NLTG prior.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.