在fpga上实现最先进puf的实验研究

M. S. Alkatheiri, Yu Zhuang, Mikhail Korobkov, A. Sangi
{"title":"在fpga上实现最先进puf的实验研究","authors":"M. S. Alkatheiri, Yu Zhuang, Mikhail Korobkov, A. Sangi","doi":"10.1109/DESEC.2017.8073844","DOIUrl":null,"url":null,"abstract":"Authentication and cryptographic key generation mechanisms are used in a broad range of security related applications. While there have been substantial efforts among the security research community, challenges in implementation methods for authentication and cryptographic key generation still prevail. With inherent irreplicability, Physical Unclonable Functions (PUFs) provide a new solution to security challenges. However, designing a new PUF or finding an appropriate existing PUF for each new security application is not an easy task, and it requires a set of particular properties to suite particular application. Thus, a thorough experimental study of numerous PUFs can provide useful information on different properties of these PUFs. Moreover, PUF development researchers can utilize the study results to design new PUFs with enhanced properties or to overcome deficiencies of existing PUFs. This paper is an effort to implement a group of state-of-the-art PUFs on two models of FPGAs and also to carry out an experimental analysis that evaluates the implemented PUFs. Our study focused on two major classes of PUFs: path-delay-based PUFs and frequency-variation-based PUFs with three designs in each of two classes. The experimental results provide useful information for security application developers to devise innovative PUF-utilized security applications as well as PUF design researchers to design PUFs for particular applications.","PeriodicalId":92346,"journal":{"name":"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...","volume":"117 1","pages":"174-180"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"An experimental study of the state-of-the-art PUFs implemented on FPGAs\",\"authors\":\"M. S. Alkatheiri, Yu Zhuang, Mikhail Korobkov, A. Sangi\",\"doi\":\"10.1109/DESEC.2017.8073844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Authentication and cryptographic key generation mechanisms are used in a broad range of security related applications. While there have been substantial efforts among the security research community, challenges in implementation methods for authentication and cryptographic key generation still prevail. With inherent irreplicability, Physical Unclonable Functions (PUFs) provide a new solution to security challenges. However, designing a new PUF or finding an appropriate existing PUF for each new security application is not an easy task, and it requires a set of particular properties to suite particular application. Thus, a thorough experimental study of numerous PUFs can provide useful information on different properties of these PUFs. Moreover, PUF development researchers can utilize the study results to design new PUFs with enhanced properties or to overcome deficiencies of existing PUFs. This paper is an effort to implement a group of state-of-the-art PUFs on two models of FPGAs and also to carry out an experimental analysis that evaluates the implemented PUFs. Our study focused on two major classes of PUFs: path-delay-based PUFs and frequency-variation-based PUFs with three designs in each of two classes. The experimental results provide useful information for security application developers to devise innovative PUF-utilized security applications as well as PUF design researchers to design PUFs for particular applications.\",\"PeriodicalId\":92346,\"journal\":{\"name\":\"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...\",\"volume\":\"117 1\",\"pages\":\"174-180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DESEC.2017.8073844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DESEC.2017.8073844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

身份验证和加密密钥生成机制广泛用于与安全相关的应用程序中。虽然安全研究界已经做出了大量的努力,但在身份验证和加密密钥生成的实现方法方面仍然存在挑战。物理不可克隆功能(Physical unclable Functions, puf)具有固有的不可复制性,为安全挑战提供了一种新的解决方案。然而,为每个新的安全应用程序设计一个新的PUF或找到一个合适的现有PUF并不是一项容易的任务,它需要一组特定的属性来适应特定的应用程序。因此,对众多PUFs进行深入的实验研究可以提供有关这些PUFs不同特性的有用信息。此外,PUF开发研究人员可以利用研究结果设计具有增强性能的新PUF或克服现有PUF的缺陷。本文是在两种fpga模型上实现一组最先进的puf的努力,并进行了实验分析,以评估所实现的puf。我们的研究集中在两大类puf上:基于路径延迟的puf和基于频率变化的puf,这两类puf各有三种设计。实验结果为安全应用开发人员设计利用PUF的创新安全应用以及PUF设计研究人员为特定应用设计PUF提供了有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An experimental study of the state-of-the-art PUFs implemented on FPGAs
Authentication and cryptographic key generation mechanisms are used in a broad range of security related applications. While there have been substantial efforts among the security research community, challenges in implementation methods for authentication and cryptographic key generation still prevail. With inherent irreplicability, Physical Unclonable Functions (PUFs) provide a new solution to security challenges. However, designing a new PUF or finding an appropriate existing PUF for each new security application is not an easy task, and it requires a set of particular properties to suite particular application. Thus, a thorough experimental study of numerous PUFs can provide useful information on different properties of these PUFs. Moreover, PUF development researchers can utilize the study results to design new PUFs with enhanced properties or to overcome deficiencies of existing PUFs. This paper is an effort to implement a group of state-of-the-art PUFs on two models of FPGAs and also to carry out an experimental analysis that evaluates the implemented PUFs. Our study focused on two major classes of PUFs: path-delay-based PUFs and frequency-variation-based PUFs with three designs in each of two classes. The experimental results provide useful information for security application developers to devise innovative PUF-utilized security applications as well as PUF design researchers to design PUFs for particular applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信