具有趋化性的增殖细胞随机模型的流体动力学极限

IF 1 4区 数学 Q1 MATHEMATICS
R. Wieczorek
{"title":"具有趋化性的增殖细胞随机模型的流体动力学极限","authors":"R. Wieczorek","doi":"10.3934/krm.2022032","DOIUrl":null,"url":null,"abstract":"A hybrid stochastic individual-based model of proliferating cells with chemotaxis is presented. The model is expressed by a branching diffusion process coupled to a partial differential equation describing concentration of chemotactic factor. It is shown that in the hydrodynamic limit when number of cells goes to infinity the model converges to the solution of a nonconservative Patlak-Keller-Segel-type system. A nonlinear mean-field stochastic model is defined and it is proven that the movement of descendants of a single cell in the individual model converges to this mean-field process.","PeriodicalId":49942,"journal":{"name":"Kinetic and Related Models","volume":"157 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hydrodynamic limit of a stochastic model of proliferating cells with chemotaxis\",\"authors\":\"R. Wieczorek\",\"doi\":\"10.3934/krm.2022032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid stochastic individual-based model of proliferating cells with chemotaxis is presented. The model is expressed by a branching diffusion process coupled to a partial differential equation describing concentration of chemotactic factor. It is shown that in the hydrodynamic limit when number of cells goes to infinity the model converges to the solution of a nonconservative Patlak-Keller-Segel-type system. A nonlinear mean-field stochastic model is defined and it is proven that the movement of descendants of a single cell in the individual model converges to this mean-field process.\",\"PeriodicalId\":49942,\"journal\":{\"name\":\"Kinetic and Related Models\",\"volume\":\"157 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinetic and Related Models\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2022032\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic and Related Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2022032","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种具有趋化性的增殖细胞的混合随机个体模型。该模型由分支扩散过程耦合到描述趋化因子浓度的偏微分方程来表示。结果表明,当单元数趋于无穷时,该模型收敛于非保守patak - keller - segel型系统的解。定义了一个非线性平均场随机模型,并证明了该模型中单个细胞后代的运动收敛于该平均场过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrodynamic limit of a stochastic model of proliferating cells with chemotaxis
A hybrid stochastic individual-based model of proliferating cells with chemotaxis is presented. The model is expressed by a branching diffusion process coupled to a partial differential equation describing concentration of chemotactic factor. It is shown that in the hydrodynamic limit when number of cells goes to infinity the model converges to the solution of a nonconservative Patlak-Keller-Segel-type system. A nonlinear mean-field stochastic model is defined and it is proven that the movement of descendants of a single cell in the individual model converges to this mean-field process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: KRM publishes high quality papers of original research in the areas of kinetic equations spanning from mathematical theory to numerical analysis, simulations and modelling. It includes studies on models arising from physics, engineering, finance, biology, human and social sciences, together with their related fields such as fluid models, interacting particle systems and quantum systems. A more detailed indication of its scope is given by the subject interests of the members of the Board of Editors. Invited expository articles are also published from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信