新一组最优p元低相关带序列

Jiwoong Jang, Jung-Soo Chung, Jong-Seon No, Habong Chung
{"title":"新一组最优p元低相关带序列","authors":"Jiwoong Jang, Jung-Soo Chung, Jong-Seon No, Habong Chung","doi":"10.1109/ISIT.2006.261605","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the new construction methods of constructing optimal low correlation zone (LCZ) sequences. We construct the new p-ary LCZ sequence sets by adopting p-ary sequence of period p m - 1 with ideal autocorrelation for integers n and m such that m n as a column sequence. The new construction methods give us the optimal sets with respect to the bound by Tang, Fan, and Matsufuji","PeriodicalId":92224,"journal":{"name":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","volume":"132 1","pages":"316-320"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"New Sets of Optimal p-ary Low Correlation Zone Sequences\",\"authors\":\"Jiwoong Jang, Jung-Soo Chung, Jong-Seon No, Habong Chung\",\"doi\":\"10.1109/ISIT.2006.261605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose the new construction methods of constructing optimal low correlation zone (LCZ) sequences. We construct the new p-ary LCZ sequence sets by adopting p-ary sequence of period p m - 1 with ideal autocorrelation for integers n and m such that m n as a column sequence. The new construction methods give us the optimal sets with respect to the bound by Tang, Fan, and Matsufuji\",\"PeriodicalId\":92224,\"journal\":{\"name\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"volume\":\"132 1\",\"pages\":\"316-320\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2006.261605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2006.261605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了构造最优低相关带序列的新方法。采用周期为pm - 1的p- ey序列,对整数n和m具有理想的自相关,使得mn为列序列,构造了新的p- ey LCZ序列集。新的构造方法给出了关于Tang, Fan和Matsufuji的界的最优集
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Sets of Optimal p-ary Low Correlation Zone Sequences
In this paper, we propose the new construction methods of constructing optimal low correlation zone (LCZ) sequences. We construct the new p-ary LCZ sequence sets by adopting p-ary sequence of period p m - 1 with ideal autocorrelation for integers n and m such that m n as a column sequence. The new construction methods give us the optimal sets with respect to the bound by Tang, Fan, and Matsufuji
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信