{"title":"不动点上的除数和函数 \\({{\\mathbb{F}}}_2[x]\\)","authors":"L. Gallardo","doi":"10.3336/gm.57.2.04","DOIUrl":null,"url":null,"abstract":"We work on an analogue of a classical arithmetic problem over polynomials. More precisely,\nwe study the fixed points \\(F\\) of the sum of divisors function \\(\\sigma : {\\mathbb{F}}_2[x] \\mapsto {\\mathbb{F}}_2[x]\\)\n(defined mutatis mutandi like the usual sum of divisors over the integers)\n of the form \\(F := A^2 \\cdot S\\), \\(S\\) square-free, with \\(\\omega(S) \\leq 3\\), coprime with \\(A\\), for \\(A\\) even, of whatever degree, under some conditions. This gives a characterization of \\(5\\) of the \\(11\\) known fixed points of \\(\\sigma\\) in \\({\\mathbb{F}}_2[x]\\).","PeriodicalId":55601,"journal":{"name":"Glasnik Matematicki","volume":"40 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed points of the sum of divisors function on \\\\({{\\\\mathbb{F}}}_2[x]\\\\)\",\"authors\":\"L. Gallardo\",\"doi\":\"10.3336/gm.57.2.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We work on an analogue of a classical arithmetic problem over polynomials. More precisely,\\nwe study the fixed points \\\\(F\\\\) of the sum of divisors function \\\\(\\\\sigma : {\\\\mathbb{F}}_2[x] \\\\mapsto {\\\\mathbb{F}}_2[x]\\\\)\\n(defined mutatis mutandi like the usual sum of divisors over the integers)\\n of the form \\\\(F := A^2 \\\\cdot S\\\\), \\\\(S\\\\) square-free, with \\\\(\\\\omega(S) \\\\leq 3\\\\), coprime with \\\\(A\\\\), for \\\\(A\\\\) even, of whatever degree, under some conditions. This gives a characterization of \\\\(5\\\\) of the \\\\(11\\\\) known fixed points of \\\\(\\\\sigma\\\\) in \\\\({\\\\mathbb{F}}_2[x]\\\\).\",\"PeriodicalId\":55601,\"journal\":{\"name\":\"Glasnik Matematicki\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glasnik Matematicki\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.57.2.04\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glasnik Matematicki","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.57.2.04","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Fixed points of the sum of divisors function on \({{\mathbb{F}}}_2[x]\)
We work on an analogue of a classical arithmetic problem over polynomials. More precisely,
we study the fixed points \(F\) of the sum of divisors function \(\sigma : {\mathbb{F}}_2[x] \mapsto {\mathbb{F}}_2[x]\)
(defined mutatis mutandi like the usual sum of divisors over the integers)
of the form \(F := A^2 \cdot S\), \(S\) square-free, with \(\omega(S) \leq 3\), coprime with \(A\), for \(A\) even, of whatever degree, under some conditions. This gives a characterization of \(5\) of the \(11\) known fixed points of \(\sigma\) in \({\mathbb{F}}_2[x]\).
期刊介绍:
Glasnik Matematicki publishes original research papers from all fields of pure and applied mathematics. The journal is published semiannually, in June and in December.