{"title":"基于雅可比- torsor矩阵和带接触变形力的蒙皮模型形状的两种改进装配偏差分析方法","authors":"Songhua Ma, Kaixin Hu, T. Hu, Z. Xiong","doi":"10.1177/09544054231184285","DOIUrl":null,"url":null,"abstract":"Assembly deviation analysis methods, which have been studied and improved over the past 30 years, are necessary and effective for checking functional requirements before manufacturing. Contact deformation was not negligible and significantly affected the final assembly deviation, which prevented the application of the current assembly deviation analysis methods. Considering the contact deformation, we aimed to improve the precision of the 3D deviation analysis methods, which are based on the Jacobian-Torsor matrix and skin model shape (SMS), respectively. In this study, the contact deformation was quantified based on the Hertzian contact theory. The unified Jacobian-Torsor matrix is modified with the location points and contact deformation to increase the precision of the stack-up assembly deviation. In the SMS-based method, the assembly components are represented as non-nominal SMS models. The final posture of each component and stack-up assembly deviation were solved by iteratively mimicking the physical assembly process. The practicality of the improved deviation analysis method was successfully demonstrated through two case studies. The modified Jacobian-Torsor matrix-based method is efficient. However, the improved SMS-based method can provide more precise results by mimicking tight fitting on mating surfaces.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"6 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two improved assembly deviation analysis methods based on Jacobian–Torsor matrix and skin model shapes with contact deformation effort\",\"authors\":\"Songhua Ma, Kaixin Hu, T. Hu, Z. Xiong\",\"doi\":\"10.1177/09544054231184285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assembly deviation analysis methods, which have been studied and improved over the past 30 years, are necessary and effective for checking functional requirements before manufacturing. Contact deformation was not negligible and significantly affected the final assembly deviation, which prevented the application of the current assembly deviation analysis methods. Considering the contact deformation, we aimed to improve the precision of the 3D deviation analysis methods, which are based on the Jacobian-Torsor matrix and skin model shape (SMS), respectively. In this study, the contact deformation was quantified based on the Hertzian contact theory. The unified Jacobian-Torsor matrix is modified with the location points and contact deformation to increase the precision of the stack-up assembly deviation. In the SMS-based method, the assembly components are represented as non-nominal SMS models. The final posture of each component and stack-up assembly deviation were solved by iteratively mimicking the physical assembly process. The practicality of the improved deviation analysis method was successfully demonstrated through two case studies. The modified Jacobian-Torsor matrix-based method is efficient. However, the improved SMS-based method can provide more precise results by mimicking tight fitting on mating surfaces.\",\"PeriodicalId\":20663,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544054231184285\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054231184285","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Two improved assembly deviation analysis methods based on Jacobian–Torsor matrix and skin model shapes with contact deformation effort
Assembly deviation analysis methods, which have been studied and improved over the past 30 years, are necessary and effective for checking functional requirements before manufacturing. Contact deformation was not negligible and significantly affected the final assembly deviation, which prevented the application of the current assembly deviation analysis methods. Considering the contact deformation, we aimed to improve the precision of the 3D deviation analysis methods, which are based on the Jacobian-Torsor matrix and skin model shape (SMS), respectively. In this study, the contact deformation was quantified based on the Hertzian contact theory. The unified Jacobian-Torsor matrix is modified with the location points and contact deformation to increase the precision of the stack-up assembly deviation. In the SMS-based method, the assembly components are represented as non-nominal SMS models. The final posture of each component and stack-up assembly deviation were solved by iteratively mimicking the physical assembly process. The practicality of the improved deviation analysis method was successfully demonstrated through two case studies. The modified Jacobian-Torsor matrix-based method is efficient. However, the improved SMS-based method can provide more precise results by mimicking tight fitting on mating surfaces.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.