H. Jani, S. S. Kachhwaha, G. Nagababu, A. Das, Mahdi Ehyaei
{"title":"风能-太阳能混合电厂的能源、火用、经济、环境、先进火用和火用-经济(扩展火用)分析","authors":"H. Jani, S. S. Kachhwaha, G. Nagababu, A. Das, Mahdi Ehyaei","doi":"10.1177/0958305X221115095","DOIUrl":null,"url":null,"abstract":"Aiming to net-zero emissions, hybrid power generation through renewable means has gained substantial attention across the globe. Considering the stochastic nature of renewable energy resources, a comprehensive performance assessment is a must prior to project development. Present work is a novel multidimensional 6E analysis (energy, exergy, economic, environmental, advanced exergy, and exergoeconomic) to evaluate the performance of hybrid wind-solar energy systems. The analysis is performed using long-tern (41 years) high-resolution ERA5 reanalysis resource data and the mathematical modeling by means of MATLAB R2018a computation software. The long-term data facilitates reliable and precise predictions of resource availability, power generation, and system performance during the lifespan of the project. The performance of HWSES in terms of capacity factor and exergy efficiency is computed to be 9.6–35.5% and 4.7–10.4% respectively, whereas the extended exergy efficiency lies in the range of 3.39–5.79%. Hybridizing wind power projects with solar power enhances the overall system capacity factor, exergy efficiency, and extended exergy efficiency by 3.46%, 5.12%, and 2.87% respectively. Hence, the hybridization leads to superior year-round system performance with smaller power fluctuations than the standalone systems. Further, wind, solar and hybrid systems would annually reduce the Specific Emission Reduction of 1128 tone/kW, 1685 tone/kW, and 1407tone/kW respectively. The present research will be helpful to the policy-makers and the project developers in the project feasibility study of hybrid energy systems.","PeriodicalId":11652,"journal":{"name":"Energy & Environment","volume":"6 1","pages":"2668 - 2704"},"PeriodicalIF":4.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy, exergy, economic, environmental, advanced exergy and exergoeconomic (extended exergy) analysis of hybrid wind-solar power plant\",\"authors\":\"H. Jani, S. S. Kachhwaha, G. Nagababu, A. Das, Mahdi Ehyaei\",\"doi\":\"10.1177/0958305X221115095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming to net-zero emissions, hybrid power generation through renewable means has gained substantial attention across the globe. Considering the stochastic nature of renewable energy resources, a comprehensive performance assessment is a must prior to project development. Present work is a novel multidimensional 6E analysis (energy, exergy, economic, environmental, advanced exergy, and exergoeconomic) to evaluate the performance of hybrid wind-solar energy systems. The analysis is performed using long-tern (41 years) high-resolution ERA5 reanalysis resource data and the mathematical modeling by means of MATLAB R2018a computation software. The long-term data facilitates reliable and precise predictions of resource availability, power generation, and system performance during the lifespan of the project. The performance of HWSES in terms of capacity factor and exergy efficiency is computed to be 9.6–35.5% and 4.7–10.4% respectively, whereas the extended exergy efficiency lies in the range of 3.39–5.79%. Hybridizing wind power projects with solar power enhances the overall system capacity factor, exergy efficiency, and extended exergy efficiency by 3.46%, 5.12%, and 2.87% respectively. Hence, the hybridization leads to superior year-round system performance with smaller power fluctuations than the standalone systems. Further, wind, solar and hybrid systems would annually reduce the Specific Emission Reduction of 1128 tone/kW, 1685 tone/kW, and 1407tone/kW respectively. The present research will be helpful to the policy-makers and the project developers in the project feasibility study of hybrid energy systems.\",\"PeriodicalId\":11652,\"journal\":{\"name\":\"Energy & Environment\",\"volume\":\"6 1\",\"pages\":\"2668 - 2704\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1177/0958305X221115095\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0958305X221115095","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Energy, exergy, economic, environmental, advanced exergy and exergoeconomic (extended exergy) analysis of hybrid wind-solar power plant
Aiming to net-zero emissions, hybrid power generation through renewable means has gained substantial attention across the globe. Considering the stochastic nature of renewable energy resources, a comprehensive performance assessment is a must prior to project development. Present work is a novel multidimensional 6E analysis (energy, exergy, economic, environmental, advanced exergy, and exergoeconomic) to evaluate the performance of hybrid wind-solar energy systems. The analysis is performed using long-tern (41 years) high-resolution ERA5 reanalysis resource data and the mathematical modeling by means of MATLAB R2018a computation software. The long-term data facilitates reliable and precise predictions of resource availability, power generation, and system performance during the lifespan of the project. The performance of HWSES in terms of capacity factor and exergy efficiency is computed to be 9.6–35.5% and 4.7–10.4% respectively, whereas the extended exergy efficiency lies in the range of 3.39–5.79%. Hybridizing wind power projects with solar power enhances the overall system capacity factor, exergy efficiency, and extended exergy efficiency by 3.46%, 5.12%, and 2.87% respectively. Hence, the hybridization leads to superior year-round system performance with smaller power fluctuations than the standalone systems. Further, wind, solar and hybrid systems would annually reduce the Specific Emission Reduction of 1128 tone/kW, 1685 tone/kW, and 1407tone/kW respectively. The present research will be helpful to the policy-makers and the project developers in the project feasibility study of hybrid energy systems.
期刊介绍:
Energy & Environment is an interdisciplinary journal inviting energy policy analysts, natural scientists and engineers, as well as lawyers and economists to contribute to mutual understanding and learning, believing that better communication between experts will enhance the quality of policy, advance social well-being and help to reduce conflict. The journal encourages dialogue between the social sciences as energy demand and supply are observed and analysed with reference to politics of policy-making and implementation. The rapidly evolving social and environmental impacts of energy supply, transport, production and use at all levels require contribution from many disciplines if policy is to be effective. In particular E & E invite contributions from the study of policy delivery, ultimately more important than policy formation. The geopolitics of energy are also important, as are the impacts of environmental regulations and advancing technologies on national and local politics, and even global energy politics. Energy & Environment is a forum for constructive, professional information sharing, as well as debate across disciplines and professions, including the financial sector. Mathematical articles are outside the scope of Energy & Environment. The broader policy implications of submitted research should be addressed and environmental implications, not just emission quantities, be discussed with reference to scientific assumptions. This applies especially to technical papers based on arguments suggested by other disciplines, funding bodies or directly by policy-makers.