{"title":"非线性Laplace-Beltrami方程的旋转不变模式:泰勒-切比雪夫级数方法","authors":"J. B. Berg, Gabriel William Duchesne, J. Lessard","doi":"10.3934/jcd.2022005","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we introduce a rigorous computational approach to prove existence of rotation invariant patterns for a nonlinear Laplace-Beltrami equation posed on the 2-sphere. After changing to spherical coordinates, the problem becomes a singular second order boundary value problem (BVP) on the interval <inline-formula><tex-math id=\"M1\">\\begin{document}$ (0,\\frac{\\pi}{2}] $\\end{document}</tex-math></inline-formula> with a <i>removable</i> singularity at zero. The singularity is removed by solving the equation with Taylor series on <inline-formula><tex-math id=\"M2\">\\begin{document}$ (0,\\delta] $\\end{document}</tex-math></inline-formula> (with <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\delta $\\end{document}</tex-math></inline-formula> small) while a Chebyshev series expansion is used to solve the problem on <inline-formula><tex-math id=\"M4\">\\begin{document}$ [\\delta,\\frac{\\pi}{2}] $\\end{document}</tex-math></inline-formula>. The two setups are incorporated in a larger zero-finding problem of the form <inline-formula><tex-math id=\"M5\">\\begin{document}$ F(a) = 0 $\\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\"M6\">\\begin{document}$ a $\\end{document}</tex-math></inline-formula> containing the coefficients of the Taylor and Chebyshev series. The problem <inline-formula><tex-math id=\"M7\">\\begin{document}$ F = 0 $\\end{document}</tex-math></inline-formula> is solved rigorously using a Newton-Kantorovich argument.</p>","PeriodicalId":37526,"journal":{"name":"Journal of Computational Dynamics","volume":"97 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Rotation invariant patterns for a nonlinear Laplace-Beltrami equation: A Taylor-Chebyshev series approach\",\"authors\":\"J. B. Berg, Gabriel William Duchesne, J. Lessard\",\"doi\":\"10.3934/jcd.2022005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this paper, we introduce a rigorous computational approach to prove existence of rotation invariant patterns for a nonlinear Laplace-Beltrami equation posed on the 2-sphere. After changing to spherical coordinates, the problem becomes a singular second order boundary value problem (BVP) on the interval <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ (0,\\\\frac{\\\\pi}{2}] $\\\\end{document}</tex-math></inline-formula> with a <i>removable</i> singularity at zero. The singularity is removed by solving the equation with Taylor series on <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ (0,\\\\delta] $\\\\end{document}</tex-math></inline-formula> (with <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\delta $\\\\end{document}</tex-math></inline-formula> small) while a Chebyshev series expansion is used to solve the problem on <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ [\\\\delta,\\\\frac{\\\\pi}{2}] $\\\\end{document}</tex-math></inline-formula>. The two setups are incorporated in a larger zero-finding problem of the form <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ F(a) = 0 $\\\\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ a $\\\\end{document}</tex-math></inline-formula> containing the coefficients of the Taylor and Chebyshev series. The problem <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ F = 0 $\\\\end{document}</tex-math></inline-formula> is solved rigorously using a Newton-Kantorovich argument.</p>\",\"PeriodicalId\":37526,\"journal\":{\"name\":\"Journal of Computational Dynamics\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jcd.2022005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2022005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2
摘要
In this paper, we introduce a rigorous computational approach to prove existence of rotation invariant patterns for a nonlinear Laplace-Beltrami equation posed on the 2-sphere. After changing to spherical coordinates, the problem becomes a singular second order boundary value problem (BVP) on the interval \begin{document}$ (0,\frac{\pi}{2}] $\end{document} with a removable singularity at zero. The singularity is removed by solving the equation with Taylor series on \begin{document}$ (0,\delta] $\end{document} (with \begin{document}$ \delta $\end{document} small) while a Chebyshev series expansion is used to solve the problem on \begin{document}$ [\delta,\frac{\pi}{2}] $\end{document}. The two setups are incorporated in a larger zero-finding problem of the form \begin{document}$ F(a) = 0 $\end{document} with \begin{document}$ a $\end{document} containing the coefficients of the Taylor and Chebyshev series. The problem \begin{document}$ F = 0 $\end{document} is solved rigorously using a Newton-Kantorovich argument.
Rotation invariant patterns for a nonlinear Laplace-Beltrami equation: A Taylor-Chebyshev series approach
In this paper, we introduce a rigorous computational approach to prove existence of rotation invariant patterns for a nonlinear Laplace-Beltrami equation posed on the 2-sphere. After changing to spherical coordinates, the problem becomes a singular second order boundary value problem (BVP) on the interval \begin{document}$ (0,\frac{\pi}{2}] $\end{document} with a removable singularity at zero. The singularity is removed by solving the equation with Taylor series on \begin{document}$ (0,\delta] $\end{document} (with \begin{document}$ \delta $\end{document} small) while a Chebyshev series expansion is used to solve the problem on \begin{document}$ [\delta,\frac{\pi}{2}] $\end{document}. The two setups are incorporated in a larger zero-finding problem of the form \begin{document}$ F(a) = 0 $\end{document} with \begin{document}$ a $\end{document} containing the coefficients of the Taylor and Chebyshev series. The problem \begin{document}$ F = 0 $\end{document} is solved rigorously using a Newton-Kantorovich argument.
期刊介绍:
JCD is focused on the intersection of computation with deterministic and stochastic dynamics. The mission of the journal is to publish papers that explore new computational methods for analyzing dynamic problems or use novel dynamical methods to improve computation. The subject matter of JCD includes both fundamental mathematical contributions and applications to problems from science and engineering. A non-exhaustive list of topics includes * Computation of phase-space structures and bifurcations * Multi-time-scale methods * Structure-preserving integration * Nonlinear and stochastic model reduction * Set-valued numerical techniques * Network and distributed dynamics JCD includes both original research and survey papers that give a detailed and illuminating treatment of an important area of current interest. The editorial board of JCD consists of world-leading researchers from mathematics, engineering, and science, all of whom are experts in both computational methods and the theory of dynamical systems.