Itô随机微分方程数值解的一阶强龙格-库塔方法

A. Soheili, M.Namjoo
{"title":"Itô随机微分方程数值解的一阶强龙格-库塔方法","authors":"A. Soheili, M.Namjoo","doi":"10.1093/AMRX/ABM003","DOIUrl":null,"url":null,"abstract":"In this paper, order conditions for coefficients of a class of stochastic Runge–Kutta (SRK) methods with strong global order 1, which applied for solving Ito stochastic differential equations (SDEs) with a single noise process, are presented. In particular, explicit twostage and three-stage SRK methods of this class with minimum principal error constants are constructed. Numerical results with two test problems of our methods, the Ito method and Milstein method will be compared.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Strong Runge–Kutta Methods With order one for Numerical Solution of Itô Stochastic Differential Equations\",\"authors\":\"A. Soheili, M.Namjoo\",\"doi\":\"10.1093/AMRX/ABM003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, order conditions for coefficients of a class of stochastic Runge–Kutta (SRK) methods with strong global order 1, which applied for solving Ito stochastic differential equations (SDEs) with a single noise process, are presented. In particular, explicit twostage and three-stage SRK methods of this class with minimum principal error constants are constructed. Numerical results with two test problems of our methods, the Ito method and Milstein method will be compared.\",\"PeriodicalId\":89656,\"journal\":{\"name\":\"Applied mathematics research express : AMRX\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied mathematics research express : AMRX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/AMRX/ABM003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/AMRX/ABM003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文给出了一类强全局1阶随机Runge-Kutta (SRK)方法的系数阶条件,用于求解具有单噪声过程的Ito随机微分方程(SDEs)。特别地,构造了这类具有最小主误差常数的显式两阶段和三阶段SRK方法。本文将对伊藤法和米尔斯坦法两个测试问题的数值结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong Runge–Kutta Methods With order one for Numerical Solution of Itô Stochastic Differential Equations
In this paper, order conditions for coefficients of a class of stochastic Runge–Kutta (SRK) methods with strong global order 1, which applied for solving Ito stochastic differential equations (SDEs) with a single noise process, are presented. In particular, explicit twostage and three-stage SRK methods of this class with minimum principal error constants are constructed. Numerical results with two test problems of our methods, the Ito method and Milstein method will be compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信