{"title":"利用替代模型和全球优化优化从废物转化为能源的工厂的烟气中捕获碳","authors":"A. Andreasen","doi":"10.2516/ogst/2021036","DOIUrl":null,"url":null,"abstract":"The optimisation of Post Carbon Capture (PCC) from a Waste-to-Energy plant has been studied using Kriging surrogate models trained from a set of rigorous process simulations. The surrogate models allow fast and efficient calculation of model responses required for the optimisation of operating parameters. Optimisation is performed using Differential Evolution (DE) requiring a vast amount of function calculations (>1000) which would be extremely time consuming if done with a rigorous process simulation model. It is found that for meeting a CO2 removal efficiency of 85% for a flue gas containing 12.6 mole % CO2 and a reboiler temperature limited to max. 120 °C, a L/G ratio of approx. 2.2 (kg/kg) is optimal. This is accompanied by a stripper/regenerator pressure of 1.85 bara, a temperature of the flue gas at the lower bound, a temperature approach of the lean amine entering the absorber of 6.5 °C (to the flue gas temperature), and a temperature approach in the L/R heat exchanger of 5 °C. The optimal lean and rich amine loading is approx. 0.21 and 0.52 (mole CO2/mole MEA).","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":"62 18 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Optimisation of carbon capture from flue gas from a Waste-to-Energy plant using surrogate modelling and global optimisation\",\"authors\":\"A. Andreasen\",\"doi\":\"10.2516/ogst/2021036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimisation of Post Carbon Capture (PCC) from a Waste-to-Energy plant has been studied using Kriging surrogate models trained from a set of rigorous process simulations. The surrogate models allow fast and efficient calculation of model responses required for the optimisation of operating parameters. Optimisation is performed using Differential Evolution (DE) requiring a vast amount of function calculations (>1000) which would be extremely time consuming if done with a rigorous process simulation model. It is found that for meeting a CO2 removal efficiency of 85% for a flue gas containing 12.6 mole % CO2 and a reboiler temperature limited to max. 120 °C, a L/G ratio of approx. 2.2 (kg/kg) is optimal. This is accompanied by a stripper/regenerator pressure of 1.85 bara, a temperature of the flue gas at the lower bound, a temperature approach of the lean amine entering the absorber of 6.5 °C (to the flue gas temperature), and a temperature approach in the L/R heat exchanger of 5 °C. The optimal lean and rich amine loading is approx. 0.21 and 0.52 (mole CO2/mole MEA).\",\"PeriodicalId\":19424,\"journal\":{\"name\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"volume\":\"62 18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2516/ogst/2021036\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2021036","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optimisation of carbon capture from flue gas from a Waste-to-Energy plant using surrogate modelling and global optimisation
The optimisation of Post Carbon Capture (PCC) from a Waste-to-Energy plant has been studied using Kriging surrogate models trained from a set of rigorous process simulations. The surrogate models allow fast and efficient calculation of model responses required for the optimisation of operating parameters. Optimisation is performed using Differential Evolution (DE) requiring a vast amount of function calculations (>1000) which would be extremely time consuming if done with a rigorous process simulation model. It is found that for meeting a CO2 removal efficiency of 85% for a flue gas containing 12.6 mole % CO2 and a reboiler temperature limited to max. 120 °C, a L/G ratio of approx. 2.2 (kg/kg) is optimal. This is accompanied by a stripper/regenerator pressure of 1.85 bara, a temperature of the flue gas at the lower bound, a temperature approach of the lean amine entering the absorber of 6.5 °C (to the flue gas temperature), and a temperature approach in the L/R heat exchanger of 5 °C. The optimal lean and rich amine loading is approx. 0.21 and 0.52 (mole CO2/mole MEA).
期刊介绍:
OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition.
OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases.
The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month.
Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.