m参数化向量场上的Takens-Bogdanov分岔分析

F. C. Navarro, F. V. Gonzalez, J. Delgado
{"title":"m参数化向量场上的Takens-Bogdanov分岔分析","authors":"F. C. Navarro, F. V. Gonzalez, J. Delgado","doi":"10.1142/S0218127410026277","DOIUrl":null,"url":null,"abstract":"Given an m-parameterized family of n-dimensional vector fields, such that: (i) for some value of the parameters, the family has an equilibrium point, (ii) its linearization has a double zero eigenvalue and no other eigenvalue on the imaginary axis, sufficient conditions on the vector field are given such that the dynamics on the two-dimensional center manifold is locally topologically equivalent to the versal deformation of the planar Takens–Bogdanov bifurcation.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":"29 1","pages":"995-1005"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Analysis of the Takens-Bogdanov bifurcation on M-Parameterized Vector Fields\",\"authors\":\"F. C. Navarro, F. V. Gonzalez, J. Delgado\",\"doi\":\"10.1142/S0218127410026277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an m-parameterized family of n-dimensional vector fields, such that: (i) for some value of the parameters, the family has an equilibrium point, (ii) its linearization has a double zero eigenvalue and no other eigenvalue on the imaginary axis, sufficient conditions on the vector field are given such that the dynamics on the two-dimensional center manifold is locally topologically equivalent to the versal deformation of the planar Takens–Bogdanov bifurcation.\",\"PeriodicalId\":13688,\"journal\":{\"name\":\"Int. J. Bifurc. Chaos\",\"volume\":\"29 1\",\"pages\":\"995-1005\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bifurc. Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218127410026277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218127410026277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

给定一个n维向量场的m参数化族,使得:(i)对于某些参数值,该族有一个平衡点,(ii)其线性化具有双零特征值,并且在虚轴上没有其他特征值,给出了向量场上的充分条件,使得二维中心流形上的动力学在局部拓扑上等价于平面Takens-Bogdanov分岔的通用变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the Takens-Bogdanov bifurcation on M-Parameterized Vector Fields
Given an m-parameterized family of n-dimensional vector fields, such that: (i) for some value of the parameters, the family has an equilibrium point, (ii) its linearization has a double zero eigenvalue and no other eigenvalue on the imaginary axis, sufficient conditions on the vector field are given such that the dynamics on the two-dimensional center manifold is locally topologically equivalent to the versal deformation of the planar Takens–Bogdanov bifurcation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信