基于文本相似度和密度峰值的非监督文本异常点检测方法

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
Mahnaz Taleb Sereshki, M. M. Zanjireh, Mahdi Bahaghighat
{"title":"基于文本相似度和密度峰值的非监督文本异常点检测方法","authors":"Mahnaz Taleb Sereshki, M. M. Zanjireh, Mahdi Bahaghighat","doi":"10.2478/ausi-2023-0008","DOIUrl":null,"url":null,"abstract":"Abstract Text mining is an intriguing area of research, considering there is an abundance of text across the Internet and in social medias. Nevertheless outliers pose a challenge for textual data processing. The ability to identify this sort of irrelevant input is consequently crucial in developing high-performance models. In this paper, a novel unsupervised method for identifying outliers in text data is proposed. In order to spot outliers, we concentrate on the degree of similarity between any two documents and the density of related documents that might support integrated clustering throughout processing. To compare the e ectiveness of our proposed approach with alternative classification techniques, we performed a number of experiments on a real dataset. Experimental findings demonstrate that the suggested model can obtain accuracy greater than 98% and performs better than the other existing algorithms.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"16 1","pages":"91 - 110"},"PeriodicalIF":0.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Textual outlier detection with an unsupervised method using text similarity and density peak\",\"authors\":\"Mahnaz Taleb Sereshki, M. M. Zanjireh, Mahdi Bahaghighat\",\"doi\":\"10.2478/ausi-2023-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Text mining is an intriguing area of research, considering there is an abundance of text across the Internet and in social medias. Nevertheless outliers pose a challenge for textual data processing. The ability to identify this sort of irrelevant input is consequently crucial in developing high-performance models. In this paper, a novel unsupervised method for identifying outliers in text data is proposed. In order to spot outliers, we concentrate on the degree of similarity between any two documents and the density of related documents that might support integrated clustering throughout processing. To compare the e ectiveness of our proposed approach with alternative classification techniques, we performed a number of experiments on a real dataset. Experimental findings demonstrate that the suggested model can obtain accuracy greater than 98% and performs better than the other existing algorithms.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"16 1\",\"pages\":\"91 - 110\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2023-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2023-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

文本挖掘是一个有趣的研究领域,因为在互联网和社交媒体上有大量的文本。然而,异常值对文本数据处理提出了挑战。因此,识别这类不相关输入的能力对于开发高性能模型至关重要。本文提出了一种新的无监督文本数据异常值识别方法。为了发现异常值,我们将重点放在任意两个文档之间的相似程度和相关文档的密度上,这些文档可能支持整个处理过程中的集成聚类。为了比较我们提出的方法与其他分类技术的有效性,我们在真实数据集上进行了大量实验。实验结果表明,该模型的准确率大于98%,优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Textual outlier detection with an unsupervised method using text similarity and density peak
Abstract Text mining is an intriguing area of research, considering there is an abundance of text across the Internet and in social medias. Nevertheless outliers pose a challenge for textual data processing. The ability to identify this sort of irrelevant input is consequently crucial in developing high-performance models. In this paper, a novel unsupervised method for identifying outliers in text data is proposed. In order to spot outliers, we concentrate on the degree of similarity between any two documents and the density of related documents that might support integrated clustering throughout processing. To compare the e ectiveness of our proposed approach with alternative classification techniques, we performed a number of experiments on a real dataset. Experimental findings demonstrate that the suggested model can obtain accuracy greater than 98% and performs better than the other existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信